Product Pipeline​

Caris Life Sciences offers unparalleled precision medicine services that are designed to maximize the chances of success for clinical trials and address many patient accrual challenges facing biopharma partners in the world of precision medicine.​

RNA-Based Predictors

The most comprehensive and unique RNA analysis available

A next-generation sequencing-based in vitro diagnostic test that uses RNA isolated from formalin-fixed paraffin embedded (FFPE) tumor tissue to detect all classes of structural rearrangements, including fusions, deletions, inversions, and duplications, as well as measuring expression and splice variants in patients diagnosed with cancer.


WTS with MI Transcriptome provides the most comprehensive and unique RNA analysis available. Our offering covers all genes, with an average of 60 million reads per patient, to deliver extremely broad coverage and high resolution into the dynamic nature of the transcriptome.”

David Spetzler
President and Chief Scientific Officer

MI Transcriptome CDx has received FDA Breakthrough Device designation for the detection of novel FGFR biomarkers including gene fusions in solid tumors. The CDx submission is based on the MI Transcriptome test which identifies novel fusions independent of the breakpoints in DNA, has the ability to detect rare fusion events far better than DNA-based short-read methods, and provides broad coverage of all exons, capturing far more possible fusion partners.

MI Transcriptome can distinguish between different fusion types and can differentiate fusions from other arrangements. It also has the potential to discover previously uncharacterized events, which is important when identifying patients who could have a strong response to targeted therapy. MI Transcriptome uses the same tissue requirements as Caris’ DNA tumor profiling and delivers results in the same 11-day turnaround, on average.

MI Transcriptome enables Whole Transcriptome sequencing (WTS). It uses the capabilities of high-throughput sequencing to gain insight into the RNA profiles of patient’s tumor. WTS builds upon our offering of the most comprehensive tumor profiling approach, which assesses DNA, RNA and proteins to ensure patients receive the right therapies.

RNA Fusion Analysis

RNA is the superior method to detect gene fusions

MI Transcriptome™ covers essentially all 22,000 genes and has the ability to detect rare or novel fusion events better than targeted RNA sequencing or DNA-based methods. Caris Molecular Intelligence® tumor profiling includes MI Transcriptome, Whole Transcriptome Sequencing (WTS), via RNA next-generation sequencing. MI Transcriptome enables gene fusion and splice variant detection from one streamlined test. While the structural complexity around the fusion breakpoints and the intronic breakpoint location of some fusions may severely hinder proper capture of the fusion events and reduce the bioinformatic accuracy of DNA sequencing,  the RNA products of these fusion events and far more straightforward to capture by RNA sequencing.

A study by Benayed, et al. shows that RNA fusion analysis identifies additional alterations as compared to DNA fusion analysis. This direct comparison shows RNA in the superior method for fusion analysis.

  • A total of 2,522 Non-Small Cell Lung Carcinoma (NSCLC) cases were sequenced using standard DNA-based methods. Of those, 275 cases lacked an oncogenic driver.
  • Among the 275, 232 that had sufficient tissue and were successfully tested with RNA-sequencing, and 36 (15.5%) were found to have oncogenic drivers that were not detected by DNA sequencing; 33 of these were clinically actionable.
  • Importantly, in this analysis DNA sequencing did not detect any fusions in NTRK 2/3 that RNA was able to detect.
  • Investigation of the causes of missed calls by DNA sequencing reveals that direct detection of gene fusion by RNA sequencing is a more sensitive and efficient way to minimize false negative results.
  • The data from Benayed, et al. are significant, but still limited by the use of targeted RNA sequencing. Further investigation using WTS would likely identify even more fusion partners.
Fusion/Variant # Detected by RNA-seq (not detected by DNA-seq)
MET (exon 14) 6
NRG1 5
ROS1 10

RNA-Based Fusion Analysis of NTRK1/2/3 Finds 50% More Clinically Actionable NTRK3 Fusion Partners than DNA

In a survey of the Caris database of over 30,000 cases run for RNA fusion detection, additional fusion partners were found beyond what other commercially available DNA panels report. In this survey, a DNA only approach, such as FoundationOne®CDx, would have missed 50% of clinically actionable NTRK3 mutations, due to the use of ETV6 (only), a common fusion partner for NTRK3*. Using RNA based fusion detection, multiple other clinically actionable NTRK3 fusion partners were found.

CarisDEAN: Deliberation Analytics

AI on a molecular level

Our proprietary and advanced AI platform uses the largest existing dataset of tumor profiling results, matched with clinical outcomes, to identify new cancer subtypes with specifically defined molecular signatures. DEAN creates and validates dozens of machine learning proprietary signatures to provide the most in-depth and exclusive analysis and interpretation. DEAN learns from patient data, including what patients were treated with and their outcomes, and uses non-linear feature selection to find relevant associations in the cast informatic space that our profiling generates. Caris Next Generation Profiling™ which is powered by DEAN, identifies unique molecular signatures by cancer subtype to help predict which patients may respond to specific treatments, making clinical assessment more precise. This has the potential to improve cancer diagnosis and therapeutic guidance in ways never before possible. DEAN enables MI GPS™ (Genomic Profiling Similarity) Score, a proprietary algorithm that molecularly classifies cancer into dozens of distinct molecular subtypes that refine and improve current diagnostic standards and informs more personalized and precise treatment.

CarisADAPT: Biotargeting System

Revolutionary, blood-based biotargeting technology

An innovative and versatile unbiased profiling platform that identifies novel molecular targets to inform and enhance drug development and advanced diagnostics. ADAPT measures thousands of protein aberrations and is being used to characterize protein differences in individual patient tumors, develop early cancer detection assays, and discover novel drug targets. Currently, ADAPT is being developed for cancer and other complex diseases, yet has applications spanning therapy development, drug delivery, diagnostic and disease monitoring.

CarisNGP: Next Generation Profiling

Predict which patients will best respond to specific treatments based on their individual molecular profiles

Caris Next Generation Profiling (NGP) uses the power of DEAN (Deliberation Analytics) artificial intelligence and machine learning technology to provide oncologists with the most thorough molecular analysis classification to inform decision making.

Caris GPSai technology has been demonstrated to accurately identify tumor origin using molecular information. This is especially important to provide an unequivocal result when there is ambiguity about tissue of origin. The use of Caris MDC technology with machine learning algorithms will help to understand non-linear relationships at the molecular level to improve cancer diagnosis and treatments and treatments tailored molecular subtype.

Machine learning analysis using 77,044 genomic and transcriptomic profiles to accurately predict tumor type

  • CUP occurs in as many as 3–5% of patients when standard diagnostic tests are not able to determine the origin of cancer.
  • Caris GPSai (Genomic Prevalence Score) is an AI that uses genomic and transcriptomic data to elucidate tumor origin.
  • The algorithm was trained on molecular data from 57,489 cases and validated on 19,555 cases.
  • GPSai predicted the tumor type out of 21 options in the labeled data set with an accuracy of over 94% on 93% of cases.
  • When also considering the second highest prediction, the accuracy increases to 97%.

Caris Research Institute

Our commitment to advancing cancer care and molecular research spans more than a decade

We explore ways to improve patient care, enhance the healthcare delivery system, and transform precision medicine into reality.

We do this with a focus on three categories: prospective and observational research studies, scientific and medical publications, and continuing medical education.


Caris is at the intersection of science, medicine and information​

Clinical Trials

Connecting patients with the most up-to-date and relevant clinical trials​
Need Support?
Contact Us
or call 1.888.979.8669 (international: +41 21 533 53 00)