#(4543): HIF Family Transcription Factor Expression in a Cohort of 4062 Patients with Renal Cell Carcinoma (RCC)

UC San Diego

BACKGROUND

- The HIF pathway drives RCC pathogenesis operating through transcription factors (TFs).
- TFs function as heterodimers of the oxygen-sensitive α (HIF1 α or HIF2 α) and constitutively expressed β subunits (HIF1 β or HIF2 β).
- Loss of VHL leads to HIF α stabilization, nuclear translocation, and formation of transcriptional complexes with β subunits.
- We aimed to characterize the molecular and clinical features associated of HIF TF mRNA expression in RCC:
- \succ Evaluate HIF TF expression levels across racial/ethnic groups, primary/metastatic tumors and different RCC histology.
- \succ Investigate the association between HIF TF expression and cooccurring alterations in genes frequently mutated in RCC.
- \succ Assess the relationship between HIF TF expression and overall survival.
- \succ Determine the potential of HIF TF expression as a predictive biomarker for benefit to VEGF TKIs.

Methods

- Next generation sequencing of DNA [592-targeted gene panel or whole exome sequencing] and RNA (whole transcriptome sequencing) were performed on RCC specimens (N=4,062) at Caris Life Sciences.
- HIF-High/Low expression was defined as >75th /<25th quartile RNA transcripts per million (TPM).
- Overall survival (OS) was defined as the time of diagnosis to death/last follow-up.
- Time on treatment (TOT) was defined as the time from start of treatment to discontinuation of therapy.
- Descriptive statistics were used to present the baseline tumor characteristics. When appropriate, statistical significance was assessed using Fisher's Exact, Mann-Whitney, or Chi-square tests

Study Population							
Category	Sub-category	Patient count (n)					
Total	RCC	4,062					
Sex	Female	1,163 (28.6%)					
	Male	2,899 (71.4%)					
Specimen site	Kidney	1,784 (43.9%)					
	Lymph node	319 (7.9%)					
	Distant metastatic sites	1,959 (48.2%)					
	Asian or Pacific Islander	972 (2.4%)					
	Black or African American	398 (9.8%)					
Race	White	2,492 (61.3%)					
	Other	213 (5.2%)					
	Unknown	346 (8.5%)					
	Not Hispanic or Latino	2,768 (68.1%)					
Ethnicity	Hispanic or Latino	453 (11.2%)					
	Unknown	325 (8.0%)					

Study Dopulatio

¹Yu-Wei Chen; ²Shayan S. Nazari; ²Andrew Elliott; ²Ninad Kulkarni; ²Norm Smith; ³Rashad Nawfal; ⁴Pedro Barata; ¹Brent Rose; ¹Aditya Bagrodia; ⁵Neeraj Agarwal; ⁶Sumanta Pal; ³Toni K. Choueiri;¹Rana R. McKay ¹University of California San Diego, San Diego, CA; ² CARIS Life Sciences, Phoenix, AZ; ³Dana-Farber Cancer Institute, Boston, MA; ⁴University Hospitals Seidman Cancer Center, Cleveland, OH; ⁵University of Utah, Huntsman Cancer Institute, Salt Lake City, UT; ⁶City of Hope, Duarte, CA

> • HIF2α (EPAS1) was lower in tumors from Black/AA vs White patients (102.3 vs 157.5 TPM, p<0.0001) and higher in tumors from Hispanic vs non-Hispanic patients (146.1 vs 195.4 TPM, p<0.01).

- Compared to kidney primary (n=1,784, 43.9%, 172.1 TPM), HIF2α (EPAS1) expression was lower in lymph nodes (n=319, 7.9%, 97.9 TPM, p<0.01) but similar to distant metastatic sites (n=1,959, 48.2%, 168.3 TPM).
- Compared to clear cell RCC (n=1198, 29.5%, 224.3 TPM), HIF2α expression was lower in papillary (n=238, 5.9%, 57.5 TPM), chromophobe (n=83, 2.0%, 91.7 TPM), and medullary RCC (n=15, 0.36%, 46.5 TPM) (p<0.01 each).

• Compared to VHL wild-type (n=1415, 34.9%), VHL-mutated tumors (n=1884, 46.4%) had higher HIF2 α (206.6 vs 97.7) TPM), lower HIF1 α (184.9 vs 233.9 TPM), lower HIF2 β (7.2 vs 10.2 TPM) (p < 0.01 each). • Sarcomatoid RCC (n=119, 2.9%) had lower HIF2 α (111.9 vs. 155.0 TPM, p<0.05), lower HIF2 β (5.6 vs 8.5 TPM, p<0.01),

Results

- and NF2 alterations.
- HIF1α-high tumors had fewer VHL, TSC1, and BAP1 alterations.

HIF 2α (O4 vs O1)

	% Prevalence in Q1	% Prevalence IN Q4	q-value		% Prevalence in	% Prevalence in			
VHL	30.47	75.91	0		Q1	Q4	q-value		
PBRM1	17.86	45.45	0	VHL	64.42	43.14	0		
KDM5C	4.33	11	0	BAP1	16 58	6 71	0		
PTEN	6.05	9.35	0.0369		5 72	2.00	0.0274		
TP53	14.22	9.11	0.0067		5.75	5.09	0.0274		
BAP1	13.07	6.91	0.0004	STAG2	14.29	2.86	0.0245		
MTOR	1.46	4.31	0.0038	FH	1.02	2.62	0.0433		
NF2	10.05	1.59	0	MET(cMET)	0.17	1.54	0.0123		
SMARCB1	4.05	1.43	0.0059	HRAS	0	0.77	0.0384		
NFE2L2	3.18	0.98	0.0184						
CDKN2A (p16)	2.13	0.48	0.013						
B2M	2.65	0.35	0.002	HIF IP (Q4 VS QI)					
RB1	2.69	0.19	0.0011		0/ Drayalance	0/ Dravalanca			
KDM6A	2.64	0.16	0.0003		% Prevalence	% Prevalence			
KRAS	2.27	0.16	0.0009		in Q1	IN Q4	q-value		
MET (cMET)	1.62	0	0.0018	TP53	18.23	12.08	0.0034		
LZTR1	1.6	0	0.0035	CHEK2	0.35	2.1	0.0076		
NF1	1.03	0	0.0185	RB1	2 87	0.92	0 0243		
FLCN	0.81	0	0.0296			0.70	0.026		
PALB2	0.81	0	0.03		0	0.79	0.030		

- High HIF2α was associated with improved OS (92.6 vs 68.1 months, p<0.001)
- High HIF2β was associated with improved OS (87.4 vs 69.8 months, p<0.004)
- HIF1 α and HIF1 β did not correlate with OS (data not shown).
- HIF1 α and HIF1 β did not correlate with TOT.
- High HIF2α was associated with prolonged TOT of cabozantinib

- RCC, warranting further clinical investigation.

and higher HIF1α (276.3 vs 197.4 TPM, p<0.01) compared to non-sarcomatoid RCC (n=3947, 97.2%)

3 CARIS

PRECISION ONCOLOGY ALLIANCE

• Tumors with high HIF2α were enriched for VHL, PBRM1, MTOR, and PTEN alterations and had fewer TP53, BAP1, MET, SMARCB1,

• HIF1β -high tumors had decreased *TP53* and *RB1* and increased *CHEK2* and *PALB2* alterations.

$\mathsf{HIE} \mathbf{1}_{\alpha} (\mathbf{0}_{1} \mathsf{v}_{\alpha} \mathbf{0}_{1})$

High gene expression (Expression Quartile 4) Low gene expression (Expression Quartile 1)

Conclusions

• This comprehensive analysis revealed distinct HIF TF expression patterns across RCC subgroups. Elevated HIF2α expression was observed in clear cell RCC, VHL-mutated tumors, and was linked to improved OS and prolonged TOT with cabozantinib, suggesting a potential prognostic role for HIF2 α in

