BRAF-V600E Papillary Thyroid Cancer: Updated Analysis of Real-world Patient Data

Martina Chirra¹, Andrew Elliott², Hira Shaikh³, Julie McGrath⁴, Dalia El-Gamal⁵, Anthony Nicholas Karnezis⁶, Farah R Abdulla², Chukwuemeka Ikpeazu Sr.⁷, Jennifer Leddon⁵, Ammar Sukari⁸, Dan Paul Zandberg⁹, Jennifer Maria Johnson¹⁰, Lova Sun¹¹, Trisha M. Wise-Draper⁵

¹University of Cincinnati Medical Center, Cincinnati, OH; ²Caris Life Sciences, Phoenix, AZ; ³University of Iowa Healthcare, Iowa City, IA; ⁴Phoenix, AZ; ⁵University of Cincinnati, OH; ⁶UC Davis Medical Center, Sacramento, CA; ⁷University of Miami-Sylvester Comprehensive Cancer Center, Cincinnati, OH; ⁶UC Davis Medical Center, Sacramento, CA; ⁷University of Miami-Sylvester Comprehensive Cancer Center, Cincinnati, OH; ⁶UC Davis Medical Center, Sacramento, CA; ⁷University of Miami-Sylvester Comprehensive Cancer Center, Cincinnati, OH; ⁶UC Davis Medical Center, Sacramento, CA; ⁷University of Miami-Sylvester Comprehensive Cancer Center, Cincinnati, OH; ⁶UC Davis Medical Center, Sacramento, CA; ⁷University of Miami-Sylvester Comprehensive Cancer Center, Cincinnati, OH; ⁶UC Davis Medical Center, Sacramento, CA; ⁷University of Miami-Sylvester Comprehensive Cancer Center, Sacramento, CA; ⁹University of Miami-Sylvester Comprehensive Cancer Center, Sacramento, CA; ⁹University of Miami-Sylvester Comprehensive Cancer Center, Sacramento, CA; ⁹University of Niami-Sylvester Comprehensive Cancer Center, Sacramento, CA; ⁹University of Niami-Sylvester Comprehensive Cancer Center, Sacramento, CA; ⁹University of Cincinnati, CH; ⁹University o Plantation, FL; ⁸Karmanos Cancer Institute, Wayne State University, Detroit, MI; ⁹UPMC Hillman Cancer Center, Pittsburgh, PA; ¹⁰Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA; ¹¹Division of Hematology/Oncology, University of Pennsylvania, Philadelphia, PA

Background

- Papillary thyroid cancer (PTC) usually carries a good prognosis after surgery +/- radioactive iodine therapy (RAI).
- 5-15% of patients become RAI refractory, and some require systemic therapy.
- BRAF-V600E, the most common mutation in PTC, is associated with poor outcomes.
- The effectiveness of TKI compared to BRAF-targeted therapy (BRAF/MEKi) and immunotherapy (IO) remains unclear in the BRAF-V600E mutant (BRAF-m) population.

Research Questions

- investigate molecular/transcriptional signatures in BRAF-m versus (vs) BRAF-wildtype (WT) PTC.
- To investigate rwOS (real-world OS) in BRAF-m vs BRAF-WT.
- To explore differences in rwOS in BRAF-m PTC according to treatment received.

Methods

DNA/RNA Next-Gen Sequencing Algorithm

FFPE submitted to Caris Life Sciences

Specimens reviewed for tumor area and tumor nuclei content

another panel designed to enrich for an additional >20,000 genes at lower depth.

Microdissection

Fig. 1 Next-Gen Sequencing (NGS) was performed on genomic DNA isolated from formalin-fixed paraffin-embedded (FFPE)

tumor samples using the NextSeq or NovaSeq 6000 platforms (Illumina, Inc., San Diego, CA). For NextSeq sequenced tumors, a

custom-designed SureSelect XT assay was used to enrich 592 whole-gene targets (Agilent Technologies, Santa Clara, CA). For

NovaSeq sequenced tumors, more than 700 clinically relevant genes at high coverage and high read-depth was used, along with

extracted for NGS

NGS using NextSeq or NovaSeq 6000

IFNy score/TME cell fractions:

	Α		
		BRAF	1
SNV/Indel mutations	TERTpro		
	TP53		
	NRAS		
	PIK3CA		
	HRAS		
	ARID2		
	ATM		
	CHEK2		
	KRAS		
	RBM10		
	PTEN		
	NF1		
	EIF1AX		
	KEAP1		
	STK11		
	MSH6		
	FH		
	PRKAR1A		
Fusions	RET		
	BRAF		
	NTRK1		
	ALK		
	NTRK3		
	ETV6		
		Biom	h

Fig. 2 A Oncoprint of single-nucleotide variants/insertion-deletion (SNV/Indel) mutations and gene fusions significantly associated with BRAF mutation status in PTC. *P<0.05, **P<0.01, ***P<0.001 reflect Chi-squared or Fisher's exact test, where appropriate, with Benjamini-Hochberg procedure applied to adjust p-values for multiple comparisons. B Summary of the most prevalent mutations (in blue) and gene fusions (in green) in BRAFm vs BRAF-WT PTC.

BRAF-m PTC was associated with a more pro-inflammatory TME milieu compared to BRAF-WT PTC. In this limited data set, treatment with mTKI vs BRAF-targeted therapy was not associated with differences in overall survival in BRAF-m PTC.

1,102 patients with PTC were identified. The majority (95%) were naïve to TKI or BRAF/MEKi. BRAF-V600E mutations were present in 68%.

24%

5%

0.4%

0%

Genomic alteration landscape: BRAF-m vs BRAF-WT PTC

BRAF-m PTC has a pro-inflammatory TME

Fig. 4 Heatmap of BRAF-m and BRAF-WT subgroups sorted by the IFNy score along with tumor microenvironment (TME) cell fractions estimated by deconvolution of bulk tumor RNA expression. *P<0.05, **P<0.01, ***P<0.001. Statistical significance was determined using Mann-Whitney U test for continuous variables and Chi-squared or Fisher's exact test for categorical variables, where appropriate.

Differentially expressed genes: **BRAF-m vs BRAF-WT PTC**

Fig. 3 Volcano plots of differentially expressed genes between BRAF-m and BRAF-WT subgroups in PTC. Dark red data points represent genes with significantly (adjusted p-value<0.05) increased expression in BRAF-m (log2FC > 1), whereas pink data points represent genes with significantly (adjusted p-value<0.05) increased expression in BRAF-WT (log2FC < -1) tumors. P-values reflect Mann-Whitney U test, with Benjamini-Hochberg procedure applied to adjust p-values for multiple comparisons. The largest fold changes were observed for SLC34A3 in BRAF-m and ZMAT5 in **BRAF-WT PTC.**

No difference in rwOS in BRAF-m vs BRAF-WT PTC

Fig. 5 Insurance claims data was used to infer rwOS from the time of initial diagnosis to death/last contact for BRAF-m and BRAF-WT subgroups. Hazard ratios and p-values were calculated using the Cox proportional hazards model and log-rank test, respectively.

Treatment choice is not associated with differences in rwOS in BRAF-m PTC

Fig. 6 rwOS calculated from the initial diagnosis date to the last contact/death for BRAF-m PTC patients treated with BRAF/MEKi vs IO (A), TKI vs IO (B) and BRAF/MEKi vs TKI (C). Hazard ratios and p-values were calculated using the Cox proportional hazards model and log-rank test, respectively.

Future directions

- Compare the transcriptomic signatures of differentiated vs non differentiated thyroid cancers.
- Investigate factors that can predict response to BRAF/MEKi treatment in BRAF-m PTC.

Acknowledgments

University of Cincinnati Cancer Center

Please contact Martina Chirra at <u>chirrama@ucmail.uc.edu</u> for any questions