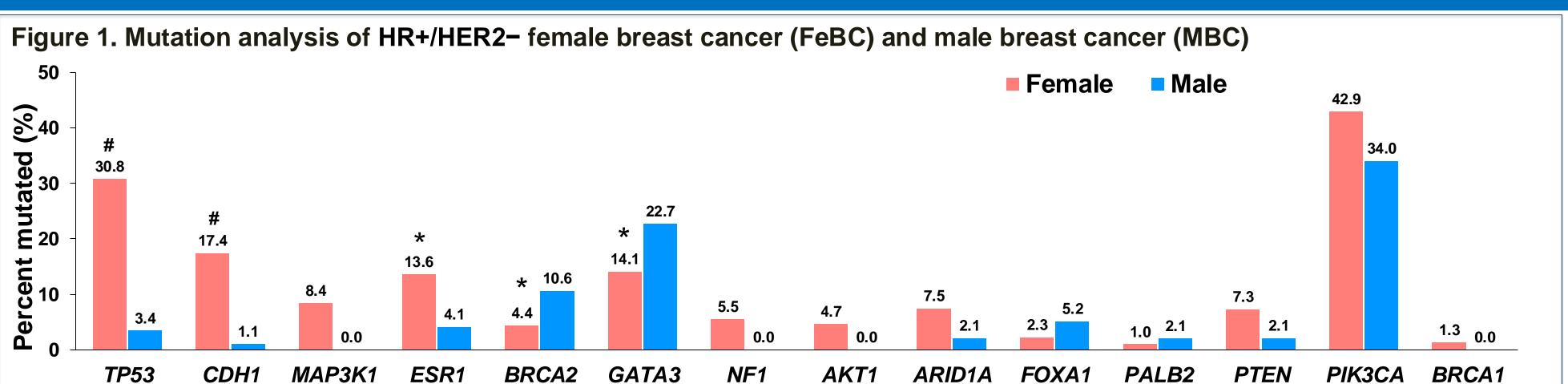
Molecular landscape of HR+/HER2- male breast cancer (MaBC) compared with female breast cancer (FeBC)

Sara M. Tolaney¹, Jose P. Leone¹ Cancer Center, Brown University, Providence, RI. 6 Yale School of Medicine, Yale University, New Haven, CT. 7 University of North Carolina at Chapel Hill, Chapel Hill, NC

Dario Trapani¹, Sachin Kumar Deshmukh², Sharon Wu², Joanne Xiu², Pooja Advani³, Daniel L. Abravanel¹, Nancy U. Lin¹, Giuseppe Curigliano⁴, William Flood², Stephanie L. Graff⁵, Maryam Lustberg⁶, Philip Spanheimer⁷, George W. Sledge Jr.², 1 Department of Medicine, Dana-Farber Cancer Institute, Boston, MA, 2 Caris Life Sciences, Phoenix, AZ. 3 Division of Hematology and Hemato-Oncology, University of Milano, Milano, Italy. 5 Lifespan Cancer Institute, Legorreta

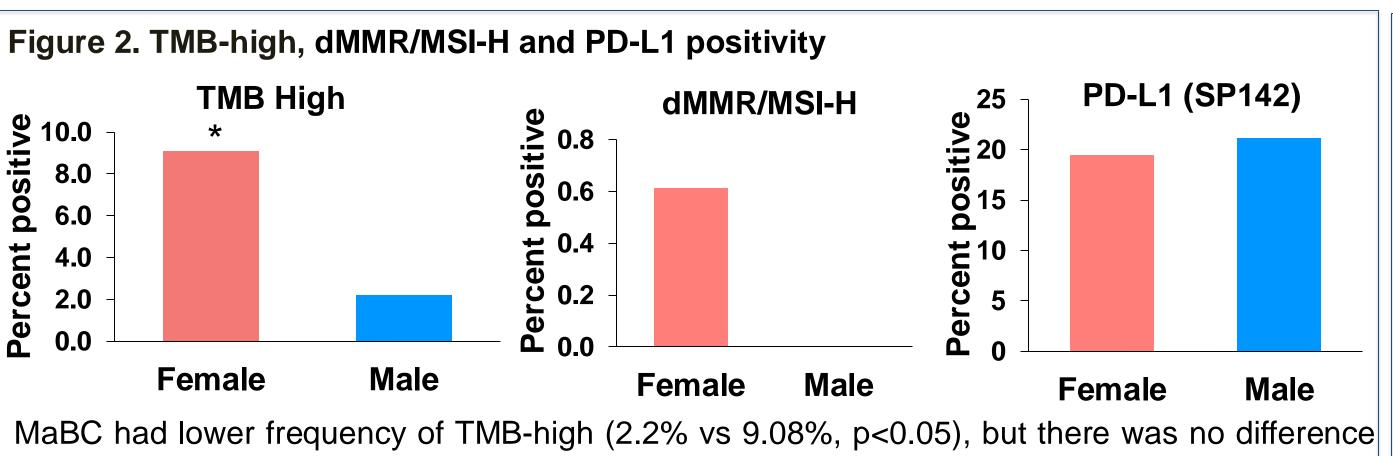
BACKGROUND

- Hormone receptor-positive/human epidermal growth factor receptor 2-negative (HR+/HER2-) breast cancer (BC) is more prevalent in male patients compared to female counterparts.
- Gender associated differences along with molecular differences, immune system, and other factors might play a crucial role in disease management.
- Here, we characterized molecular and immune differences between HR+/HER2- MaBC and FeBC.

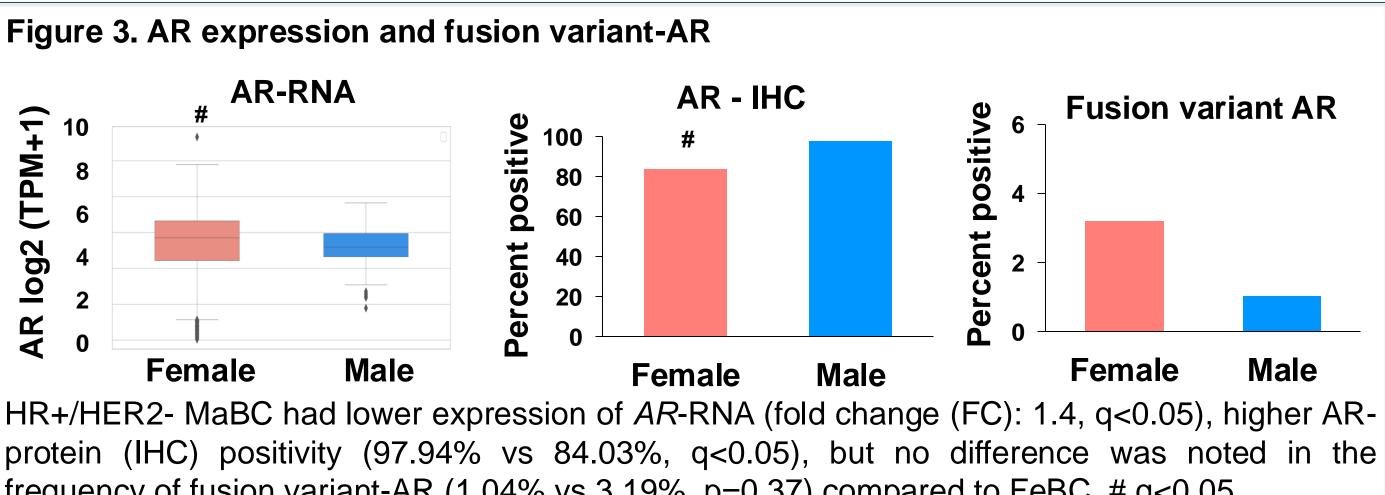

METHODS

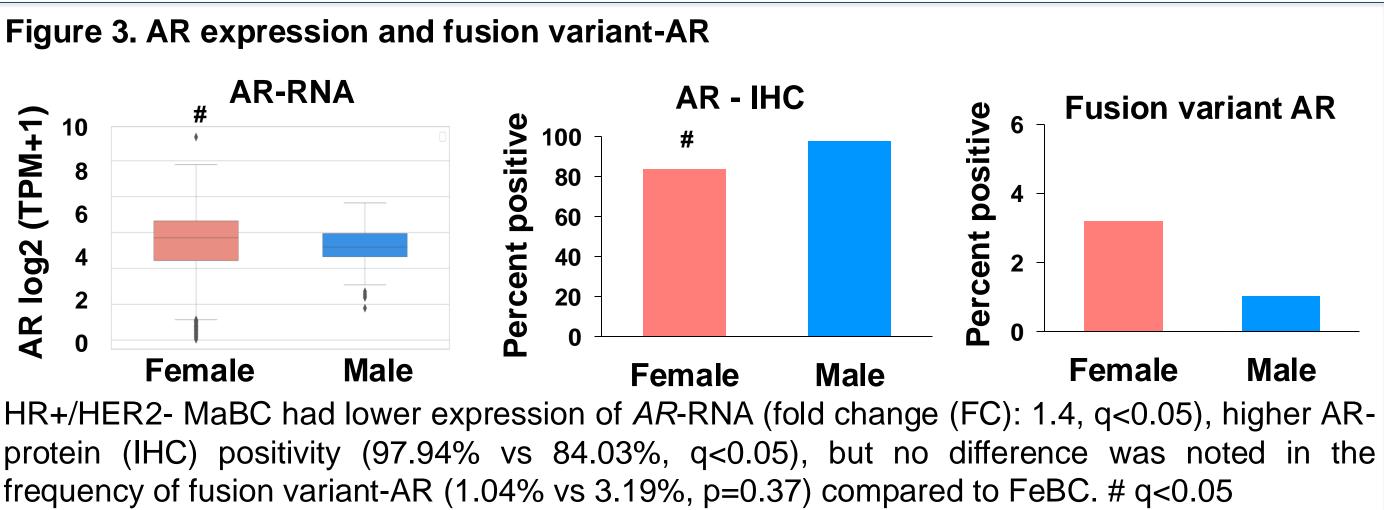
- 8156 female (HR+/HER2-, n = 5232) and 121 male (HR+/HER2-, n = 97) BC samples were analysed by nextgeneration sequencing (592, NextSeq; WES, NovaSeq) and Whole Transcriptome Sequencing (WTS; NovaSeq) (Caris Life Sciences, Phoenix, AZ).
- Tumor mutational burden (TMB) totaled somatic mutations per tumor (high>10 mt/MB).
- Microsatellite-instability (MSI) was tested by IHC and NGS.
- Immune cell fractions were calculated by deconvolution of WTS: Quantiseq.
- Statistical significance was determined using chi-square and Mann-Whitney U test with p-values adjusted for multiple comparisons (q < 0.05).

Table 1. Sample demographic information						
		Female	Male			
Count (N)		5232	97			
Median Age [range]		62 [24 - >89]	67 [35 - >89]			
Race	White	73.9% (3067/4151)	75.3% (61/81)			
	Black/AA	16.4% (680/4151)	16.0% (13/81)			
	Asian/Pacific Islander	4.0% (168/4151)	8.6% (7/81)			
	Other	5.7% (236/4151)	0.0% (0/81)			
Ethnicity	Not Hispanic or Latino	86.6% (3550/4097)	89.2% (66/74)			
	Hispanic or Latino	13.4% (547/4097)	10.8% (8/74)			


Table 1: Sample demographic information

Race/ethnicity data is self-reported




÷

DO

* p<0.05

HR+/HER2- MaBC had higher frequency of BRCA2 (10.64% vs 4.38%, p<0.05), GATA3 (22.68% vs 14.11%, p<0.05), but lower frequency of TP53 (3.45% vs 30.76%, q<0.05), ESR1 (4.12% vs 13.62%, p<0.05) and CDH1 (1.06% vs 17.43%, q<0.05) compared to HR+/HER2- FeBC. * p<0.05, # q<0.05

in dMMR/MSI-high (0% vs 0.61%, p=1) or PD-L1 (IHC) positivity (21.21% vs 19.47%, p=0.72).

RESULTS

Figure 4. Immune cell infiltration Female Male					
6.04	6.45				
2.51	2.91				
4.79	5.00				
2.70	2.51				
3.22	3.08				
0.11	0.00 *				
1.54	1.49				
2.56	2.26				
	Female 6.04 2.51 4.79 2.70 3.22 0.11 1.54				

🔁 Low Median% 📕 High Median%

increased had Female BC infiltration of DC4 T cells (0.11% vs. 2.9%) compared to male BC. For monocytes and CD8 T cells median was 0 in both groups. *p<0.05.

Figure 5. Immune-related gene expression								
Checkpoint gene			.	MHC Class-I		MHC Class-II		
	Female	Male		Female	Male		Female	Male
FOXP3	1.89	1.93	HLA-C	155.11	189.39	HLA-DRB1	83.79	103.64
IDO1	0.99	0.79	B2M	1423.6	1444.6	HLA-DQB1	18.57	19.66
CD274	3.36	2.73				IILA-DQDI		
LAG3	0.92	0.82	TAP1	10.85	11.08	HLA-DPA1	150.51	174.30
PDCD1	0.32	0.30	HLA-B	136.18	163.4	HLA-DPB1	76.21	89.59
HAVCR2	17.50	18.19						
PDCD1LG2	1.14	1.24	HLA-A	132.82	154.81	HLA-DPB2	0.05	0.04
CTLA4	0.75	0.86	TAP2	25.17	23.90	HLA-DQB2	0.95	1.56 #

Low TPM (Median) High TPM (Median) MaBC had increased expression of MHC class I gene HLA-B (FC: 1.2), MHC class II gene *HLA-DQB2* (FC: 1.6). * p<0.05 # q<0.05

Figure 6. Cancer progression-related gene expression									
Stem cell genes			Drug efflux genes			s A	Apoptosis-related		
	Female	Male		Female Male			Female Male		
ALDH1A3	3.98	5.67	ABCG2	1.24	1.33	BCL2L1	28.14	28.01	
ALDH1A1	9.19	5.99 #	ABCC1	22.68	21.17	BIRC6	99.80	90.57	
NANOG	0.36	0.31	ABCC2	0.81	0.59 #	NAIP	18.69	20.57	
PROM1	2.22	1.17#	ADCCZ			BIRC2	30.46	28.77	
KLF4	7.18	5.26 #	FFAR4	0.27	0.31	XIAP	49.39	42.86	
SOX2	0.30	0.21#	ABCC3	12.14	10.10	BCL2	6.57	7.59	
POU5F1	1.31	0.91#	ABCB1	2.85	2.78	BIRC3	5.08	4.25	

Low TPM (Median) High TPM (Median) MaBC had decreased expression of drug efflux gene ABCC2 (FC: 1.4), and stem cell genes (*KLF4, SOX2, POU5F1, PROM1, ALDH1A1*, FC: 1.3-1.9). # q<0.05

CONCLUSIONS

These data indicate that HR+/HER2- MaBC has a differential mutational spectrum and TMB-high frequency, immune cell infiltration, MHC Class I and MHC class II, drug efflux and stem cell-related gene expression compared to their HR+/HER2-FeBC counterparts. These suggest important differences in tumor biology between men and women with HR+/HER2- breast cancer. A better understanding of these differences with additional research may help in design future clinical trials and treatments for men with HR+/HER2-BC.