Keck School of Medicine of USC

Priya Jayachandran¹, Sachin Kumar Deshmukh², Sharon Wu², Jennifer R. Ribeiro², Irene Kang³, Joanne Xiu², Francesca Battaglin¹, Darcy V. Spicer¹, Daphne B. Stewart¹, Shivani Soni¹, Wu Zhang¹, Janice Lu⁴, Karam Ashouri¹, Joshua Millstein¹, William Flood², Jose P. Leone⁴, Dario Trapani⁴, Maryam Lustberg⁵, Stephanie L. Graff⁶, George W. Sledge Jr², Heinz-Josef Lenz¹, Evanthia Roussos Torres¹

1 Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 2 Caris Life Sciences, Phoenix, AZ3 Department of Medical Oncology & Therapeutics Research, City of Hope Orange County, Lennar Foundation Cancer Center, Irvine, CA. 4 Rober H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL. 5 Department of Medicine, Dana-Farber Cancer Institute, Boston, MA. 6 Yale School of Medicine, Yale University, New Haven, CT. 7 Lifespan Cancer Institute, Legorreta Cancer Center, Brown University, Providence, RI

BACKGROUND

- Male breast cancer (BC) accounts for less than 1% of new BC cases annually.
- Androgen receptor (AR), a member of steroid and nuclear receptor superfamily is emerging as an important factor in pathobiology of BC.
- While the estrogen receptor (ER) is well-studied in BC, the role of the AR is less understood, particularly in male patients.
- Here, we aimed to characterize the molecular and immunological features of AR gene expression in male BC.

METHODS

- 191 samples from male breast cancer patients were tested by NGS (592, NextSeq; WES, NovaSeq) and WTS (NovaSeq; Caris Life Sciences, Phoenix, AZ).
- Tumor mutational burden (TMB) totaled somatic mutations per tumor (high>10 mt/MB).
- Immune cell fractions were calculated by deconvolution of WTS: Quantiseq.
- Tumors with AR-high(H) and AR-low(L) RNA expression were classified as above or below the 50th percentile, respectively.
- Real world overall survival (OS) was obtained from insurance claims and calculated from tissue collection to last contact using Kaplan-Meier estimates.
- Statistical significance was determined by chi-square and Mann-Whitney U test with *p*-values adjusted for multiple comparisons (q<.05).

Table 1. DC conort demographic characteristics			
Variables	AR-low (50th percentile)	AR-high (50th percentile)	
Count (N)	96	95	
Median age (range)	64.5 (33->89)	69.5 (38->89)	
Race (count, N)			
White	66.2% (51/77)	71.1% (54/76)	
Black	22.1% (17/77)	18.4% (14/76)	
Asian or Pacific Islander	5.2% (4/77)	9.2% (7/76)	
Other	6.5% (5/77)	1.3% (1/76)	
Ethnicity (count, N)			
Not Hispanic or Latino	93.2% (69/74)	90.9% (60/66)	
Hispanic or Latino	6.8% (5/74)	9.1% (6/66)	

Table 1 BC cohort demographic characteristics

Race and ethnicity data is self reported

Comprehensive characterization of androgen receptor in male breast cancer

patients with BC.

h male breast cancer			
ug eff	lux gene	AR-H had highe	
R-low	AR-high	expression of immune	
1.20	1.35	checkpoint genes	
0.24	0.35 *	HAVCR2, LAG3; FC	
7.37	30.41*	1.3-1.5), stem cell- related genes (<i>CD34,</i> <i>CD44, POU5F1, KLF4,</i> <i>ALDH2</i> ; FC: 1.2-1.4)	
0.69	0.87		
9.67	15.18*		
1.81	2.95 *	(FFAR4, ABCC1)	
0.23	0.30	ABCC3, ABCB1; FC	
1.4–1.7). *p<0.05.			
igh and MBC survival in TP53 WT vs MT			

МΤ

WT

numerically better (mOS: survival 25.7 35.6 VS months, HR 0.52, 95% CI 0.20-1.35, p=0.17) compared *TP53*-MT. to Similarly, AR-L with TP53-WT had (mOS: survival 23.2 48.3 VS months, HR 0.58, 95% CI 0.22-1.33, p=0.18) compared

AR-H with TP53-

hac

to *TP53*-MT.