

Comprehensive Molecular Characterization of Thymic Epithelial Tumors

Chul Kim¹, Tolulope Adeyelu², Rohan Maniar³, Alex Farrell², Jacob Zaemes¹, Jeffrey Solzak², Bradley Hancock², Andrew Elliott², Ida Micaily⁵, Misako Nagasaka⁶, Jorge Nieva⁷, Hossein Borghaei⁸, Balazs Halmos⁹, Patrick Ma¹⁰, Milan Radovich², Sunil Badve⁴, Patrick Loehrer³.

CARIS®

CHOLESTEROL HOMEOSTASIS

TNFA SIGNALING VIA NFKE

EPITHELIAL MESENCHYMAL TRANSITION

MTORC1 SIGNALING

NOTCH SIGNALING

ANGIOGENESIS

MYC TARGETS V2

ALLOGRAFT REJECTION

APICAL SURFACE

MTORC1 SIGNALING

CHOLESTEROL HOMEOSTASIS

STROGEN RESPONSE EARLY

INTERFERON ALPHA RESPONSE ***p<0.00

ASCO Poster# 8113

Figure 4: Gene Set

Enrichment Analysis:

Comparison of Thymic

Thymomas and B3-

that MYC Target V2,

Carcinoma with Non-B3

Thymomas. GSEA revealed

Angiogenesis, and mTORC1

pathways are enriched in TC

than in T. Thymic Carcinoma

and B3 -Thymomas appears

to be clustered in similar

pathway.

Gene Set Enrichment Analysis in

TETs

¹Georgetown University, ²Caris Life Sciences, Phoenix, AZ, ³Indiana University, ⁴Emory University, ⁵Sidney Kimmel Cancer Center at Thomas Jefferson University, ⁶UCI Health, ⁷University of South California, ⁸Fox Chase Cancer Center, ⁹Montefiore Medical Center, ¹⁰Penn State Cancer Institute.

Background

School of Medicine

- epithelial tumors (TETs), which thymomas (TMM) carcinomas (TC), are rare, yet they are the most common neoplasms in the anterior mediastinum.
- TETs can lead to significant morbidity and mortality.
- Thymomas are categorized into subtypes histological features (WHO subtypes - A, AB, B1, B2, B3)
- To develop more effective therapeutics for TETs, it is necessary to better understand their molecular underpinnings.
- Herein, we present the findings from an indepth molecular characterization of TETs.

Methods

- TETs samples (n = 138; 55 from thymus and 81 from metastatic sites) were profiled using next generation sequencing (NGS) of DNA (592-genes/WES) and RNA (WTS) at Caris Life Sciences (Phoenix, AZ).
- Histological review was carried out to confirm the WHO subtypes for TETs.
- PD-L1+ expression was tested by IHC $(SP142; \geq 2+, \geq 5\%).$
- Tumor Mutational Burden (TMB)-High was defined as ≥10 Mut/Mb.
- Cell infiltration in the tumor microenvironment was estimated by quanTlseq.
- Gene expression profiles were analyzed for transcriptomic signatures (T-cell-inflamed score) predictive of IO response.
- The relative expression (transcript per million -TPM) of surface antigens (surfaceome) were evaluated.
- Pathway enrichment was obtained using Gene Set Enrichment Analysis (GSEA).

Results

Table 1: Patient Demographics

		_			
	Characteristic	Thymic Epithelial	Primary Tumor	Metastatic Tumor	
		Tumor	Sites	Sites	
	Total, N cases	138	55	81	
	Age, Median	60.5	60	60	
	[Range], years	[17-88]	[17-82]	[23-81]	
	Sex, n(%)				
	Male	75 (54.3%)	35 (63.6%)	39 (48.1%)	
	Female	63 (45.7%)	20 (36.4%)	42 (51.9%)	

Table 2: Alterations in Thymic Epithelial Tumors.

Molecular Alterations (%)	A (n=10)	AB (n=13)	B1 (n=6)	B2 (n=15)	B3 (n=46)	Thymic carcinoma (n=48)
TP53	0.0	0.0	0.0	6.7	10.9	29.2
GTF2I	30.0	23.1	0.0	6.7	2.2	0.0
KIT	0.0	0.0	0.0	0.0	15.2	6.3
KRAS	0.0	0.0	0.0	0.0	4.3	0.0
HRAS	10	0.0	0.0	0.0	0.0	6.3
PIK3CA	0.0	7.7	0.0	0.0	2.2	2.1
TMB-H	0.0	0.0	0.0	0.0	6.8	8.3
dMMR/MSI-H	0.0	0.0	0.0	0.0	2.2	8.3
High PD-L1 (≥ 50%)	37.5	60	20	87.5	51.2	28.3

while TC had significantly higher B-cells and Tregs.

Tumor Microenvironment and IO Response

Markers

a.u, p<0.001). Expression of immune checkpoint genes (PDCD1, PD-L2 and PD-L1) were significantly

mic Carcinoma

Genomic Landscape of Thymic Epithelial Tumor

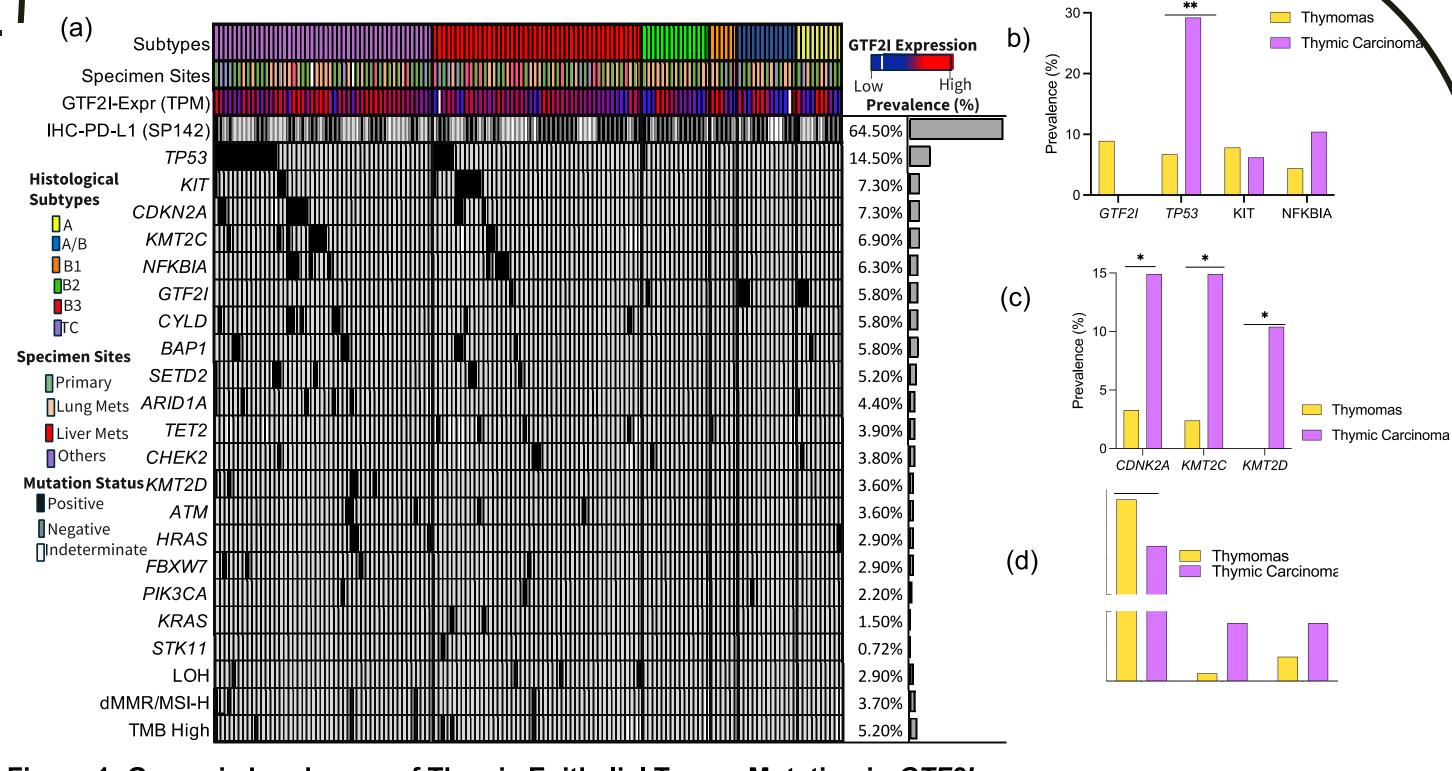


Figure 1: Genomic Landscape of Thymic Epithelial Tumor. Mutation in *GTF2I* exclusively observed in thymomas while alteration in dMMR/MSI-H was predominant in thymic carcinoma.

Expression of Surfaceome (SF)

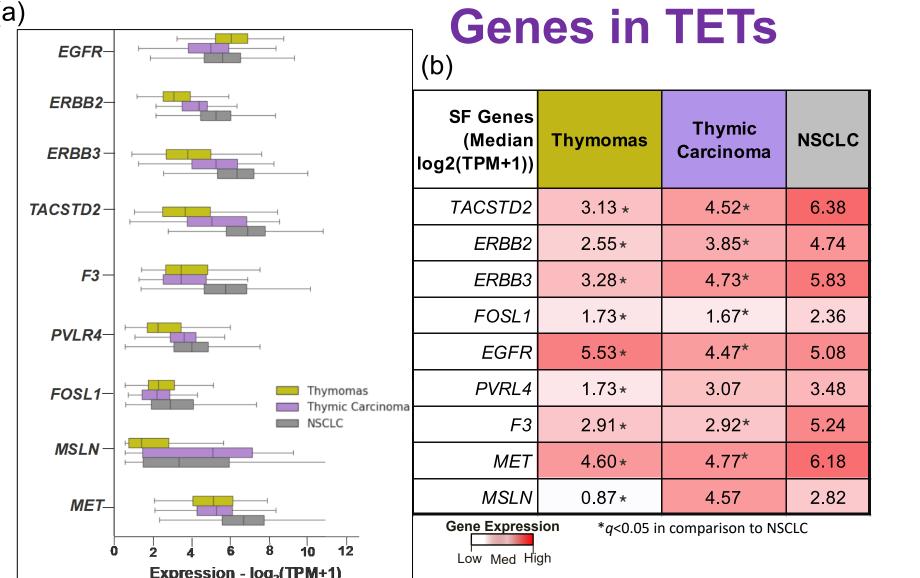


Figure 2: TMM exhibited significantly higher t-cell inflamed score compared to TC (median: 42.0 vs -50.5 Figure 3: Surfaceome genes (ERBB2: fold change (FC) = 1.51, ERBB3: FC = 1.45, *TROP2*: FC = 1.45, *NECTIN-4*: FC = 1.77 and *MESOTHELIN*: higher in TMM compared to TC. TMM exhibited significantly higher T cells (CD4+/8+), macrophages (M2) FC = 5.25) were significantly highly expressed in TC compared to T. Relative the NSCLC, TETs had a lower expression of surfaceome

Conclusions

- Our findings offer insights into the molecular characteristics of TETs and identify potential therapeutic targets, contributing valuable information for drug development.
- Specifically, the relatively high prevalence of dMMR/MSI-H status in TC underscores the potential utility of assessing dMMR/MSI-H in patients with TC.

Contact

Dr. Chul Kim (chul.kim@gunet.georgetown.edu) **Georgetown University**