Abstract # 4107: Characterizing outcomes of biliary tract cancers (BTC) with β-catenin (CTNNB1) alterations

Lydia D. Chow, Diana L. Hanna1, Rituparna Ganguly2, Yasmine Baca3, Jonathan Pai1, Ami Marian1, Sandre Algeiz3, Mehmood Akoar1, Philip A. Phlip1, Syman Iqbal1, Rachna T. Shroff6, Syma Iqbal1, Heinz-Josef Lenz1, Tanios S. Bekaii-Saab7, Anthony B. El-Khoueiry1.

1University of Southern California, Norris Comprehensive Cancer Center, Los Angeles CA; 2Caris Life Sciences, Irving TX; 3Caris Life Sciences, Phoenix AZ; 4O’Neal Comprehensive Cancer Center of University of Alabama at Birmingham, Birmingham AL; 5Henry Ford Cancer Institute, Detroit MI; 6University of Arizona Cancer Center, Tucson AZ; 7Mayo Clinic Comprehensive Cancer Center, Scottsdale AZ. Contact: Lydia.Chow@med.usc.edu

CTNNB1 mutation status and gene expression level is associated with overall survival in patients with BTC, particularly in IHCC.

• Aberrant Wnt/β-catenin activation has been implicated in tumor formation, progression in BTC.
• CTNNB1 is a key transcriptional co-activator in canonical Wnt signaling.
• The impact of CTNNB1 alterations on outcomes in intrahepatic (IHCC) vs extrahepatic (EHCC) vs gallbladder (GB) tumors and patterns of gene co-expression is unclear.
• We examined the molecular correlates and predictive and prognostic significance of CTNNB1 alterations in a real-world cohort of patients (pts) with BTC.

Background
• CTNNB1 mutations and mRNA expression levels impact survival in BTC, especially IHCC, and may be associated with benefit from chemotherapy.
• CTNBB1 alterations are associated with immunogenic, DNA repair and angiogenic pathways.
• CTNNB1 mutation status and expression levels may serve as predictive and prognostic markers in patients with BTC undergoing systemic therapy and identify novel therapeutic strategies.

Methods
• 7450 BTC tumors were analyzed using Next Generation Sequencing (NextSeq), Whole Exome and Whole Transcriptome Sequencing (Novaseq) at Caris Life Sciences (Phoenix, AZ).
• Tumors were classified by CTNNB1 expression levels in transcripts per million (TPM); top quartile was considered high expressors (Q4), bottom quartile was considered low expressors (Q1) within each subtype. Real-world overall survival (OS) data was obtained from insurance claims.
• Hazard ratio (HR) was calculated using the Cox proportional hazards model, P values were calculated using the log-rank test. Significance was determined to be p <0.05. Chi-square and Mann-Whitney tests determined molecular differences between subgroups and adjusted for multiple comparisons (q<0.05).

Results
• CTNNB1 mutations are rare in BTC (1.3%).
• CTNNB1-mt tumors were more frequently TP53-mt (63% vs 41%), ERBB2-mt (9% vs 2%) and ATM-mt (9% vs 3%). CTNNB1-wt tumors were more likely BAP1-mt (9% vs 0%) and IDH1-mt (10% vs 0%) (all q<0.05).
• CTNNB1-mt tumors had higher median CTNNB1 expression vs wt (154.9 vs 113.4, p<0.009).
• CTNNB1 Q4 tumors were more likely to be TP53-mt (95% vs 34%), PIK3CA-mt (9% vs 5%), KRAS-mt (22% vs 12%) and less likely IDH1-mt (4% vs 14%) compared to Q1 (all q<0.05).
• CTNNB1 Q4 pts had higher ARID1A, CTLA4, LAG3, HIF1A, TGFB1/2/3, EPHA2, EPHA4, VEGFA expression (FC: 2.1-4.2, all q<0.05) and higher T-cell inflamed score and MAPK activation score, as well as lower interferon gamma score vs Q1.

Figure 1: Distribution of Biliary Tract Cancer Subtypes

Figure 2: Overall Survival by CTNNB1 Mutation Status in Patients with BTC

Patients with CTNNB1-wt tumors had significantly better OS vs CTNNB1-mt.
(A: 13.6 vs 10.2 mo, HR 0.74, p=0.008). This association remained significant in IHCC
(B: 13.2 vs 4.5 mo, HR 0.64, p=0.031) but not EHCC (C: 18.0 vs 11.8 mo, HR 0.87, p=0.04) or GB (D: 12.9 vs 11.0 mo, HR 0.75, p=0.071).

Figure 3: Overall Survival by CTNNB1 Expression Level in Patients with BTC

Patients with CTNNB1 Q1 tumors had significantly better OS vs CTNNB1 Q4.
(A: 14.5 vs 12.4 mo, HR 0.88, p=0.007). This association held in IHCC (B: 15.0 vs 10.6 mo, HR 0.77, p=0.00001) but not EHCC (C: 17.5 vs 19.9 mo, HR 1.05, p=0.70) or GB (D: 12.4 vs 12.8 mo, HR 1.05, p=0.63).

Figure 4: Overall Survival by CTNNB1 Expression Level in Patients with BTC Receiving Chemotherapy

There was a trend towards improved OS in pts with IHCC CTNNB1 Q1 tumors receiving gemcitabine or fluorouracil (17.5 vs 15.0 mo, HR 0.86, p=0.054); no difference in outcomes by CTNNB1 expression in pts receiving immunotherapy.

Conclusions
• CTNNB1 mutations and mRNA expression levels impact survival in BTC, especially IHCC, and may be associated with benefit from chemotherapy.
• CTNNB1 alterations are associated with immunogenic, DNA repair and angiogenic pathways.
• CTNNB1 mutation status and expression levels may serve as predictive and prognostic markers in patients with BTC undergoing systemic therapy and identify novel therapeutic strategies.