Distinct genomic landscapes characterize mismatch-repair deficiency (dMMR)/microsatellite instability-high (MSI-H) gastrointestinal (GI) cancers stratified by tumor mutation burden (TMB)

Jingyuan Wang 1,2,3, Joanne Xiu 4, Alex P. Farrell 5, Francesca Battaglin 1, Hiroyuki Arai 1, Joshua Millstein 1, Shivani Soni 1, Wu Zhang 1, Anthony F. Shields 6, Axel Grothey 6, Benjamin A. Weinberg 7, Emil Lou 1, Moll’d Khushman 9, Davendra P.S. Sohal 10, Michael J. Hall 11, Matthew Oberley 4, David Spetzler 4, and Heinz-Josef Lenz 1.

Abstract ID: 2618

Background

• TMB-H was reported to be predictive of response to immune checkpoint inhibitors[1-2].
• However, genomic signatures contributing to TMB-H independent from dMMR/MSI-H status are not well-studied.
• We aimed to characterize specific molecular features of a large cohort of MSS GI tumors with TMB-H.

Methods

• NGS was performed on genomic DNA isolated from formalin-fixed paraffin-embedded tumor samples using the NextSeq or NovaSeq 6000 platforms (Illumina, Inc., San Diego, CA). All variants were detected with greater than 99% confidence based on allele frequency and amplicon coverage, with an average sequencing depth of coverage of greater than 500 and an analytic sensitivity of 5%.[3]
• Microsatellite instability (MSI)/ MMR status was determined by a combination of NGS (≥46 loci), IHC and fragment analysis.
• TMB-H were defined using differing TMB cutoffs (10, 20, 50 mutations/Mb), according to the standard algorithm by Friends of Cancer Research TMB Harmonization Project[4].
• Molecular features were compared in four groups (TMB<10 vs 10-20 vs 20-50 vs ≥50mutations/Mb) using Fisher-Exact or Chi-square and adjusted for multiple comparison by Benjamini-Hochberg.
• Significance was determined by q<.05.

Results

Fig 1. Tumors with TMB over 10, 20, 50 mutations/Mb were observed in 95.38%, 86.05% and 14.47% respectively in the dMMR/MSI-H GI cohort (n=2272).

Fig 2. Distinct mutational landscapes according to different TMB levels (all PA<0.0001).

Fig 3. The rates of CNNE1 amplification and HER2 overexpression were the highest in tumors with TMB below 10 mutations/Mb (all Padj<0.05).

Fig 4. The association between PD-L1 positivity and TMB levels was only observed in gastroesophageal cancers.

Conclusion

This is the largest study to investigate the distinct molecular landscape of dMMR/MSI-H GI cancers with different degrees of TMB. These data may inform our understanding of the efficacy of ICB in dMMR/MSI-H GI tumors.

Reference: