ALABAMA AT BIRMINGHAM.

Background

- The main mismatch-binding factor in humans is hMutSa, consisting of MSH2 and MSH6, which recognizes single-base mispairs. Upon mismatch binding, the hMutS complex undergoes conformational change into a sliding clamp and a hMutL heterodimer is recruited.
- hMutL complex is hMutLa, consisting of MLH1 and PMS2 and • The main participating in the repair of single-base mismatches. When the hMutS-hMutL complex encounters a strand discontinuity, an excision machinery is recruited, the mismatch containing fragment is degraded, and a new strand synthesized

Figure 1: The different hMutS and hMutL complexes in human MMR.

- Salem et al. reported that in CRC and EC, loss of co-expression of MLH1/PMS2 was more common than loss of MSH2/MSH6 (P < .0001). Loss of coexpression of MLH1/PMS2 was associated with lower mean TMB (MLH1/PMS2: 25.03 mut/Mb vs MSH2/MSH6 46.83 mut/Mb; P < .0001).
- In colorectal cancer (CRC) and endometrial cancer (EC) patients (pts), preliminary data suggest a differential response to immune checkpoint inhibitors (ICIs) according to different MMR alterations.
- The drivers of this difference remain unknown and no reliable predictive biomarker has been found.
- We explored the genomic alterations, tumor mutation burden (TMB), immune-related gene expressions and signatures, tumor microenvironment (TME), neoantigen load and median overall survival (mOS) in CRC and EC pts treated with ICIs with different MMR alterations.

Materials and Methods

- CRC (N= 14,949) and EC (N=3,574) specimens were tested at Caris Life Sciences (Phoenix, AZ) with Next Gen Sequencing (NGS) of DNA (592-gene or whole exome sequencing) and RNA (whole transcriptome sequencing).
- MMR/MSI status was determined by IHC of MMR protein and/or NGS.
- Immune cell abundance was quantified using quanTIseq.
- Gene expression profiles were analyzed for T cell-inflamed signature (TIS) and IFN-gamma scores.
- Immune epitope prediction was performed using the NetMHCpan v4.0 method in the Immune Epitope Database.
- Real-world mOS was obtained from insurance claims data and calculated from tissue collection or ICIs start to last contact.
- Statistical significance was determined using chi-square/Fisher-Exact and adjusted for multiple comparisons (adjusted p < 0.05).

The differential response to immune checkpoint inhibitors in colorectal and endometrial cancer patients according to different mismatch repair alterations

Moh'd Khushman¹; Michael Toboni²; Jia Zeng³; Joanne Xiu³; Alex Farrell³; Upender Manne¹; Bassel El-Rayes¹, Emil Lou⁴; Anthony Shield⁵; Philip Agop Philip⁵; Mohamed Salem⁶; Jim Abraham³; David Spetzler³; John Marshall⁷; Priya Jayachandran⁸; Michael J Hall⁹; Heinz-Josef Lenz⁸; W. Michael Korn²; Mathew A. Powell² 1: The University of Alabama at Birmingham; 2: Barnes Jewish Hospital/Washington University; 6: Levine cancer institute; 7: Georgetown University; 8: USC; 9: Fox Chase cancer center

Figure 2: Colorectal (CRC) and Endometrial (EC) Patients

Colorectal Cancer (N = 14949) neg MSH2 MSH2 pos MSH6 MSH6 MSH6 MSH6 MSH2

84 (0.6%) patients had MutS co-loss 648 (4.7%) patients had MutL co-loss 117 (0.9%) patients had other MMR IHC loss.

MSH6

MSH6

pos neg MSH2 MSH2

Endometrial Cancer (N = 3574)

PMS2	pos	pos		neg		pos		neg	
		MSH6		MSH6		MSH6		MSH6	
		pos	neg	pos	neg	pos	neg	pos	neg
		2271	28	2	48	1	0	0	0
	neg	MSH2				MSH2			
		pos		neg		pos		neg	
		MSH6		MSH6		MSH6		MSH6	
		pos	neg	pos	neg	pos	neg	pos	neg
		44	3	0	0	915	2	0	1

48 (1.4%) patients had MutS co-loss 915 (27.6%) patients had MutL co-loss 81 (2.4%) patients had other MMR IHC loss.

Figure 3: Genomic alterations

MSH2, TP53, ERBB3, PPP2R1A, IHC-PD-L1, MSH3, ERBB2 and ARHGAP35 positive rates are significantly higher in MutS.

IHC PR and IHC ER loss positive rates are significantly lower in MutS

Figure 4: Tumor Mutation Burden

Colorectal Cancer

Endometrial Cancer MLH1 and PMS2 co-loss and MSH2 and MSH6 co-loss normal MSH2 and MSH6 and normal MLH1 and PMS2

TMB values are significantly higher in MutS co-loss

Figure 5: Immune related gene expression

Colorectal Cancer

Expression of CD274, IFNG, IDO1 and LAG3 are significantly lower in MutS coloss

Endometrial Cancer

Expression of CD80, CD274, CTLA4, HAVCR2, IFNG, IDO1, LAG3, PDCD1 and PDCD1LG2 are significantly higher in MutS co-loss

Colorectal Cancer

pos

MSH6

pos | neg | pos | neg | pos | neg

MSH6

Mutation frequencies of APC, KRAS, ERBB2, ERBB3 are significantly higher in MutS. IHC PD-L1 positive rate, mutation frequency of BRAF is lower in MutS

Endometrial Cancer

Results

Figure 6: Immune signature (T-cell inflamed score)

No difference in T-cell inflamed score betweer

the two groups

Endometrial Cancer

T-cell inflamed score is significantly higher in MutS co-loss

Figure 7: Immune signature (IFN-gamma score)

INF-gamma score is significantly higher in MutS co-loss

Figure 8: Tumor Microenvironment

Colorectal Cancer

IFN-gamma scores are significantly lower in

MutS co-loss group.

Cell Type	fold change	
B cell	0.9299854	
Macrophage M1	1.0353868	
Macrophage M2	0.7504589	
Monocyte	inf	
Neutrophil	1.0647099	
NK cell	0.8898786	
T cell CD4+ (non-		
regulatory)	1.0405909	
T cell CD8+	1.4589834	
T cell regulatory		
(Tregs)	1.0091382	
Myeloid dendritic		
cell	0.97253186	

B cells, Macrophage M2 (cold) and NK cells are significantly higher in MutS co-loss

Endometrial Cancer

Cell Type	fold change
B cell	1.0926403
Macrophage M1	0.61074114
Macrophage M2	1.1284298
Monocyte	3.4750133
Neutrophil	1.0382272
NK cell	1.0406753
T cell CD4+ (non-	
regulatory)	0.8124716
T cell CD8+	0.32283562
T cell regulatory	
(Tregs)	0.8363445
Myeloid dendritic	
cell	1.2676436

Macrophage M1 and CD8+ cell are significantly higher in MutS co-loss

Myeloid dendritic cell is significantly lower in MutS

Figure 9: Neoantigen load (number of neoepitopes)

The numbers of high, intermediate, and low affinity neoepitopes are significantly higher in MutS co-loss

Endometrial Cancer 8888

The numbers of high, intermediate, low affinity epitopes are significantly higher in MutS co-loss

PRECISION ONCOLOGY ALLIANCE

Figure 10: Median Overall Survival (collection to last contact)

Colorectal Cancer

¹⁴⁹⁾ vs. MutL co-loss (N = 980) was 56 months (m) vs. 36 m (p = 0.003)

Endometrial Cancer

loss (N = 1804) was NR vs. 47 m (p < 0.001)

Figure 11: Median Overall Survival (ICIs treatment to last contact)

- In ICI-treated pts, the mOS in MutS co-loss (N = 28) vs. MutL co-loss (N = 149) was not reached (NR) vs. 32 m (p = 0.005).
- BRAF mutation didn't impact survival in MutL co-loss

Endometrial Cancer

In ICI-treated pts, the mOS in MutS co-loss (N = 11) vs. MutL co-loss (N = 273) was NR vs. NR (p = 0.559)

Summary and Conclusion

Features	Colorectal Cancer (MutS co-loss vs. MutL co-loss)	Endometrial Cancer (MutS co-loss vs. MutL co-loss)
Incidence	0.6 vs 4.7	1.4 vs 27.6
Genomic alterations	High APC, KRAS, ERBB2, ERBB3 vs. PD-L1 and BRAF	MSH2, TP53, ERBB3, PPP2R1A, IHC-PD-L1, MSH3, ERBB2 and ARHGAP35 vs. ER and PR
ТМВ	Higher in <u>MutS</u> co-loss	Higher in MutS co-loss
T-cell inflamed score	No difference	Higher in MutS co-loss
IFN-gamma score	Lower in MutS co-loss	Higher in MutS co-loss
Immune related gene expression	CD274, IFNG, IDO1 and LAG3 are lower in MutS co-loss	CD80, CD274, CTLA4, HAVCR2, IFNG, IDO1, LAG3, PDCD1, and PDCD1LG2 are higher in MutS co-loss
Tumor microenvironment	B cells, Macrophage M2 (cold) and NK cells are higher in MutS co-loss.	Macrophages M1 and CD8+ cell are higher in MutS. Myeloid dendritic cell is lower in MutS co-loss.
Neoantigen Load	High, intermediate, and low affinity neoepitopes are higher in <u>MutS</u> co-loss	High, intermediate, and low affinity neoepitopes are higher in <u>MutS</u> co-loss
mOS (collection to last contact)	56 months (m) vs. 36 m (p = 0.003).	NR vs. 47 m (p < 0.001)
mOS(ICIs treatment to last contact)	NR vs. 32 m (p = 0.005)	NR vs. NR (p = 0.559)

- This is the largest study to explore differential response to ICIs in CRC and EC pts with different MMR alterations.
- In pts with CRC and EC, the mOS was longer in MutS co-loss compared to MutL co-loss.
- In ICI-treated pts, the mOS was longer in MutS co-loss compared to MutL co-loss in CRC but not in EC.
- Apart from TMB, among the explored biomarkers, neoantigen load was higher in MutS co-loss compared to MutL co-loss in both CRC and EC and maybe the driving factor for differential response to ICIs.