Multi-omic analysis reveals distinct molecular profiles of uterine and non-uterine leiomyosarcoma

Tabitha Copeland1, Roman Grosbigb5, Don S. Dizon2, Andrew Elliott3, Galina Lagos4, Margaret von Mehren6, Kenneth Cardona7, Michael J. Demeure8, Richard F. Riedel1, Vasa Flotou2, Alexander J. Choui3, Abhijit Kumar2, Jaime Molinillo2, Moh I.M. Khushbuman1, Gina Z. D’Amato1, Andrea P. Espejo Friere1, W. Michael Korn9, and Jonathan C. Trei9

1.Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 2.Lifespan Cancer Institute and Brown University, Providence, RI, 3.California Life Sciences, Irvine, CA, 4.Kolumba University Medical Center, New York, NY, 5.Medical University of Innsbruck, Innsbruck, Austria, 6.Fox Chase Cancer Center, Philadelphia, PA, 7.Wilmer Cancer Institute, Baltimore, MD, 8.Cancer Institute of New Jersey, New Brunswick, NJ, 9.Wustrow Medical College, New York, NY, 10.University of Arizona Cancer Center, Tucson, AZ, 11. ‘Masson Oncology Center, Minneapolis, MN. *University of South Alabama, Mobile, AL; †Temesy University, Atlanta, GA; ‡University of Macro-Sylvester Comprehensive Cancer Center, Miami, FL.

Background

- Leiomysarcoma (LMS) is a rare group of mesenchymal malignancies found in the uterus, retroperitoneum, skin, or other soft-tissue sites1.
- Histologically, all LMS tumors have similar appearance with elongated cells with abundant cytoplasm and a high presence of smooth muscle actin and desmin, yet their behavior and clinical characteristics vary dramatically2.
- Treatment for LMS is extrapolated from trials including both uterine (uLMS) and non-uLMS subtypes.
- Whether they respond similarly and have similar outcomes from treatment is not clear3.
- We used the Caris POA to examine molecular composition of LMS by site of origin to better inform future drug development and trial design.
- Caris precision oncology alliance (POA) best-in-class collaborative research network focusing on precision oncology to identify predictive and prognostic markers that help in improving the outcomes and clinical care of patients with cancer.

METHODS

- We reviewed 1115 specimens with LMS histology tested by Caris Life Sciences for:
 - targeted exome (NextSeq, 592 gene panel)
 - whole exome
 - whole transcriptome sequencing (NovoSeq)
- Specimens were stratified into uLMS, rLMS (retroperitoneal), and otherLMS (non-uterine/retroperitoneal) subgroups based on tumor origin sites.
- Genomic data was analyzed for mutations, copy number aberrations, and fusions.
- RNA expression profiling included evaluation of individual genes and gene set enrichment analysis (GSEA).
- P-value adjustment performed by the Benjamini-Hochberg procedure.

RESULTS

- LMS specimens most frequently harbored TP53 (64%, n=612), ATRX (30%, n=219), RB1 (22%, n=156), and MED12 (12%, n=110) mutations, with these genes accounting for 74.4% (n=1044) of all observed pathogenic/likely pathogenic mutations.
- RB1 mutations were significantly less common in uLMS (15%) compared to rLMS (30%, p<0.005) and otherLMS (33%, p<0.01).
- MED12 mutations were almost exclusive to uLMS (22% vs 1% rLMS, 3% otherLMS, p<0.05).
- MAP2K4 copy number amplification were more common in rLMS (7%), frequent co-amplification of nearby genes (FLCN, GID4, SPECC1, GAS7, PER1, and AURKB) located at chr17p11-13 (7%), with frequent co-amplification of nearby genes (FLCN, GID4, SPECC1, GAS7, PER1, and AURKB) located at chr17p11-13.
- Actionable gene fusions involving AKT (2%, n=111), FGFR1 (0.2%, n=1), and NTRK1/2 (0.2%, n=1 each) were rare overall, with similar prevalence across subtypes.
- Genomic alteration rates were not significantly different between rLMS and otherLMS subtypes.
- RNA expression profiling identified significant upregulation of PI3K/Akt/mTOR, DDR, WNT/Beta-Catenin pathway genes in non-uLMS.
- GSEA indicated several immune-related gene sets were enriched in rLMS and otherLMS compared to uLMS.

CONCLUSIONS

- Uterine and ST-LMS both have markedly few genetic aberrations with 4 genes accounting for 74.4% of all pathogenic mutations.
- ST-LMS are largely driven by amplification of genes at chr17p11-13 as well as RB1 mutations.
- Copy number alterations are largely absent in uLMS.
- Actionable gene fusions are exceedingly rare, but overall consistent with pan-cancer observations.
- Pathway alterations are driven by a single gene in that pathway (eg. ATRX in DDR pathway).
- ST LMS have significantly more active genomes than uLMS based on RNA expression profiling with significant upregulation of multiple cancer-associated pathways.
- No genomic aberrations with associated survival or response to chemotherapy, but this was limited by available clinical data.

REFERENCES

CONCLUSIONS

- Comprehensive molecular profiling suggests that LMS originating from the uterus represents a molecularly distinct disease compared to other primary sites of origin.
- We identified key genomic patterns which have potential for targeted therapy.
- These data provide insight for the framework of future clinical trials designed to separate uLMS from non-uLMS histologies, although further subdivision does not appear to be warranted.

REFERENCES