

Whole Transcriptome Sequencing Reveals Oncogenic Fusions in Melanoma

W. Michael Korn², Burton L. Eisenberg¹, and Michael J. Demeure¹ ⁵University of South Alabama, Mobile, AL; ⁶USC Keck School of Medicine, Los Angeles, CA

Sourat Darabi¹, Andrew Elliott², David R. Braxton¹, Jia Zeng², Kelsey Poorman², Geoffrey T. Gibney³, Justin Moser⁴, Thuy Phung⁵, Michael B. Atkins³, Gino K. In⁶, ¹Hoag Family Cancer Institute, Newport Beach, CA; ²Caris Life Sciences, Phoenix, AZ; ³MedStar Georgetown University Hospital, Washington, DC; ⁴HonorHealth Scottsdale Shea Medical Center, Scottsdale, AZ;

Introduction

- Somatic genomic alterations occur frequently in melanoma
- BRAF mutations are the most clinically relevant as they predict for response to targeted therapies
- Oncogenic gene fusions are frequently identified in different cancers with an unknown incidence in melanoma
- Targeted therapies are approved for specific gene fusions in other tumor types and are now standard of care
- The aim of this retrospective study was to determine the prevalence of oncogenic fusions in metastatic or locally advanced melanoma
- Gene expression analysis across a broad group of melanomas with and without fusions was performed in order to better elucidate the functional consequences of gene fusions in this aggressive malignancy

Methods

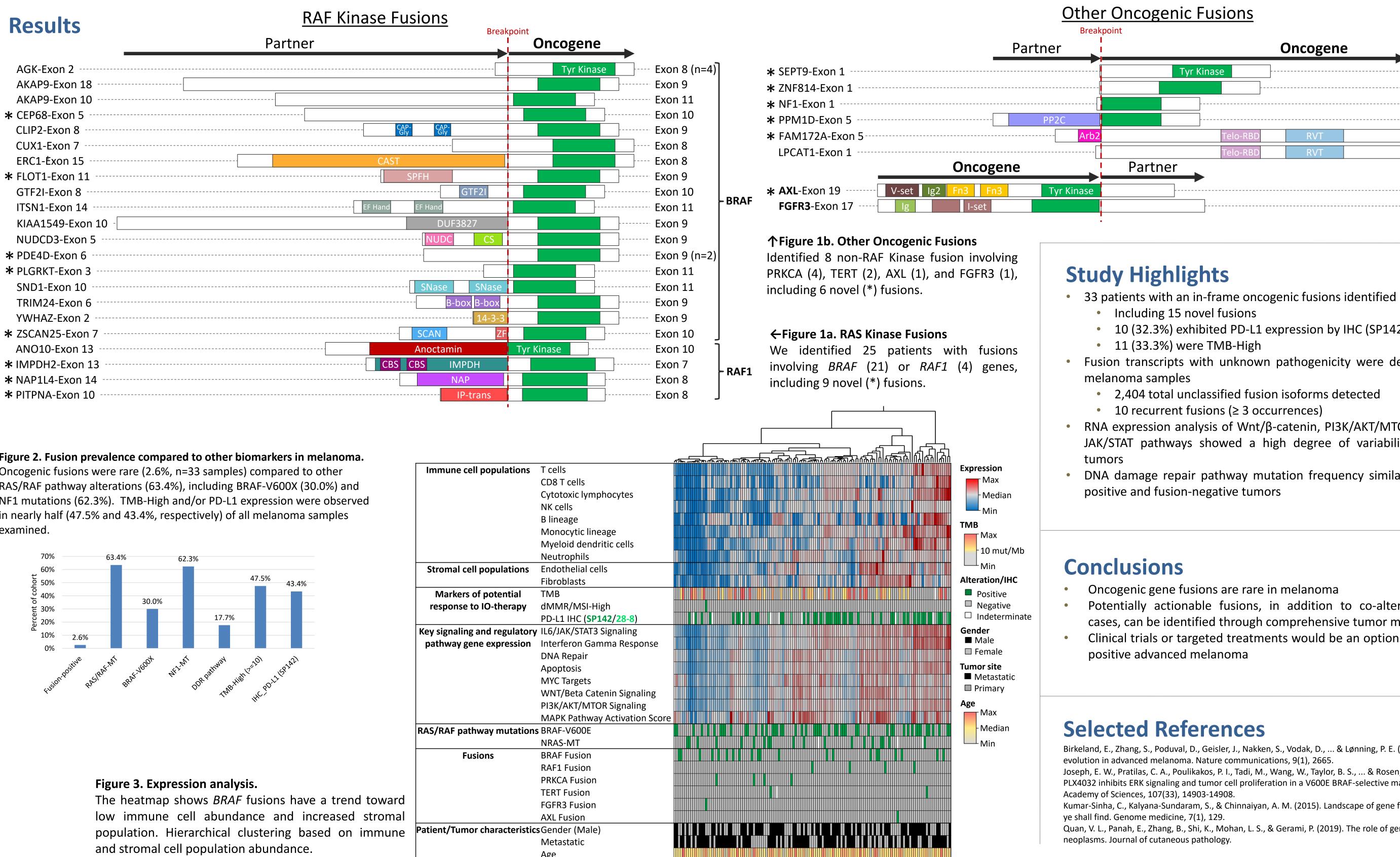
- Retrospective analysis of FFPE patient tumors that were profiled as part of routine clinical testing (Caris Life Sciences, Phoenix, AZ)
- Samples were profiled by next-generation sequencing of DNA/RNA (592-gene panel/whole transcriptome [WTS]) and immunohistochemistry
- In addition to detection of fusions by WTS, samples were exampled for coalterations, including tumor mutational burden (TMB), deficient mismatch repair/high microsatellite instability (dMMR/MSI-High), and PD-L1 protein expression.

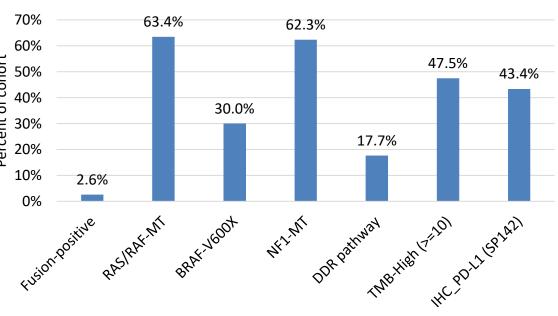
Results

- 1,255 melanoma specimens were screened for fusions (Table)
- We identified 33 (2.6%) tumors with in-frame oncogenic fusions (Figures 1a and 1b) • 25 Raf kinase fusion: 21 BRAF fusions and 4 RAF1 fusions
- 796 (63.4%) cases with *RAS/RAF* pathogenic or likely pathogenic mutations • 373 (30.0%) *BRAF* p.V600X mutations
- Tumors harboring PRKCA and TERT fusions were each detected with at least one MAPK pathway co-alteration (*NRAS, NF1*, or *BRAF* p.V600E mutation)

Patient/Tumor Characteristics			
Total, N cases	1,255		
Median Age, years (SD)	67 (13.5)		
- Age Range, years	3-90+		
Female/Male, N cases	478/777		
- (% Female/% Male)	(38.1%/61.9%)		
Metastatic/Primary, N cases	780/456		
- (% Metastatic/% Primary)	(63.1%/36.9%)		
- [N unclear]	[19]		

Table. Patient/Tumor Characteristics




- AGK-Exon 2
- CLIP2-Exon 8
- CUX1-Exon 7
- GTF2I-Exon 8

- * PLGRKT-Exon 3

Figure 2. Fusion prevalence compared to other biomarkers in melanoma. Oncogenic fusions were rare (2.6%, n=33 samples) compared to other RAS/RAF pathway alterations (63.4%), including BRAF-V600X (30.0%) and NF1 mutations (62.3%). TMB-High and/or PD-L1 expression were observed in nearly half (47.5% and 43.4%, respectively) of all melanoma samples examined.

50% 40% ≝ 30% 20% 10%

Immune cell populations	T cells			
	CD8 T cells			
	Cytotoxic lymphocytes			
	NK cells			
	B lineage			
	Monocytic lineage			
	Myeloid dendritic cells			
	Neutrophils			
Stromal cell populations	Endothelial cells			
	Fibroblasts			
Markers of potential	ТМВ			
response to IO-therapy	dMMR/MSI-High			
	PD-L1 IHC (SP142/28-8)			
Key signaling and regulatory	IL6/JAK/STAT3 Signaling			
pathway gene expression	Interferon Gamma Response			
	DNA Repair			
	Apoptosis			
	MYC Targets			
	WNT/Beta Catenin Signaling			
	PI3K/AKT/MTOR Signaling			
	MAPK Pathway Activation Sco			
RAS/RAF pathway mutations	BRAF-V600E			
	NRAS-MT			
Fusions	BRAF Fusion			
	RAF1 Fusion			
	PRKCA Fusion			
	TERT Fusion			
	FGFR3 Fusion			
	AXL Fusion			
Patient/Tumor characteristics Gender (Male)				
	Metastatic			
	Age			

C	Oncogene	9		
]			Exon 3	Г
			Exon 4	
			Exon 9	- PRKCA
			Exon 9	
	RVT		Exon 2	
	RVT		Exon 2	- TERT

• 10 (32.3%) exhibited PD-L1 expression by IHC (SP142 or 28-8)

• Fusion transcripts with unknown pathogenicity were detected in 668 (53.2%) of

• RNA expression analysis of Wnt/ β -catenin, PI3K/AKT/MTOR, DNA repair, INFG, and JAK/STAT pathways showed a high degree of variability among fusion-positive

DNA damage repair pathway mutation frequency similar in patients with fusion-

Potentially actionable fusions, in addition to co-alterations in fusion-positive cases, can be identified through comprehensive tumor molecular profiling Clinical trials or targeted treatments would be an options for patients with fusion-

Birkeland, E., Zhang, S., Poduval, D., Geisler, J., Nakken, S., Vodak, D., ... & Lønning, P. E. (2018). Patterns of genomic

Joseph, E. W., Pratilas, C. A., Poulikakos, P. I., Tadi, M., Wang, W., Taylor, B. S., ... & Rosen, N. (2010). The RAF inhibitor PLX4032 inhibits ERK signaling and tumor cell proliferation in a V600E BRAF-selective manner. Proceedings of the National

Kumar-Sinha, C., Kalyana-Sundaram, S., & Chinnaiyan, A. M. (2015). Landscape of gene fusions in epithelial cancers: seq and

Quan, V. L., Panah, E., Zhang, B., Shi, K., Mohan, L. S., & Gerami, P. (2019). The role of gene fusions in melanocytic