

Tumor Biomarker Evaluation Of 6,785 Patients For Combination Treatment Strategies In NSCLC

¹Rebecca Feldman, Ph.D., ¹Joanne Xiu, Ph.D., ²Ravi Salgia, M.D., Ph.D. ¹Caris Life Sciences, Phoenix, AZ, ²University of Chicago, Chicago, IL

Abstract

Background: Non-small cell lung cancer (NSCLC) exhibits activation of multiple tumor pathways. Presence of multiple aberrations may account for drug resistance as well as strategies for combination therapies. We examined concurrent aberrations of biomarkers in NSCLC to present an overview of potential patient cohorts who may benefit from such combinations.

Methods: 6785 NSCLC cases referred to Caris Life Sciences between 2009 thru 2013 were evaluated. Specific testing was performed and included a multiplatform approach: sequencing (Sanger, NGS), protein expression (IHC) and gene amplification (CISH/FISH).

Results: EGFR mutation (MT) rate was 12.7% (135/1059), of which 57% overexpressed EGFR (IHC) and 61% had EGFR gene amplification (FISH). This describes dependence on the EGFR pathway and potential importance of dual inhibition with cetuximab and EGFR TKIs. 66% and 7% of EGFR MT patients were MET high (IHC) and amplified (CISH), respectively, suggesting potential benefit from dual targeting of EGFR and MET. Interestingly, TP53 mutations were observed in 54% of EGFR MT which has important implications for resistance to EGFR TKIs (Huang, et al. 2011) and possible cross-resistance to radiotherapy. ALK translocations were observed in 101 of 3611 (2.8%) patients, among which 19%, 3% and 2% carried concurrent EGFR, MET and HER2 amplification (ISH), respectively, suggesting the potential for combining crizotinib with agents such as cetuximab, onartuzumab or trastuzumab. BRAF mutation was observed in 3.3% (34/1061), among which EGFR and MET were high by IHC (both have been implicated in resistance to BRAFi in other tumor types) in 58% and 48%, respectively, indicating benefit from combination of newly approved dabrafenib with cetuximab or onartuzumab.

Conclusion: Our study shows that among treatment candidates of targeted therapies in NSCLC, a significant portion present activation of multiple pathways, therefore the majority of alterations are not mutually exclusive from other biomarkers. Also lending support for the importance of a multiplatform approach to biomarker testing and potential role of combination treatment strategies.

Background

With increased understanding of molecular alterations in NSCLC, recent research has shown a number of signaling nodes are activated within signaling pathways. Targeting molecular alterations individually, however, often leads to suboptimal responses, and inevitable resistance mechanisms. Integration of targeted therapies with cytotoxic agents, as well as novel combinations of targeted therapies, is hoped to further increase therapeutic potential of single-agent inhibitor strategies. We explored a database of theranostic biomarker frequencies in NSCLC adenocarcinomas to explore the overlapping events that may result in potential novel combination strategies.

Methods

6,785 cases referred to Caris Life Sciences from 2009 through 2013 were evaluated; diagnoses were collected from referring physicians and classified at intake based on pathology and clinical history. Specific testing was performed per physician request and included a combination of sequencing (nextgeneration sequencing [NGS], sanger sequencing), protein expression (immunohistochemistry) and gene amplification (CISH or FISH).

References

- 1. Kris, M.G., P.A. Bunn, et al. (2014). "Using Multiplexed Assays of Oncogenic Drivers in Lung Cancers to Select Targeted Drugs." JAMA 311(19): 1998-2006.
- 2. Stinchcombe, T.E. and G.L. Johnson. (2014). "MEK inhibition in non-small cell lung cancer." Lung Cancer
- (http://dx.doi.org/10.1016/j.lungcan.2014.09.005) 3. Janne, P.A., L. Crino, et al. (2013). "Selumetinib plus docetaxel for KRAS-mutant advanced non-small cell lung cancer: a randomized, multicentre, placebo-controlled, phase 2 study." Lancet Oncol 14:38-47.

Results

Overall mutation rates for major oncogenic drivers are shown to the right, in "Major Targetable alterations in NSCLC" and are represented by different colored headings. Analysis of each driver subgroup is represented in tables below - color of top row correlates with the driver alteration.

Additional⁻ RRM1 low TS low PTEN loss, m **TOPO1** posit EGFR positiv cMET positi SPARC posit TUBB3 low, EGFR mutat

Additional Target	% (n)	Proposed Combination
RRM1 low	83 (435/520)	+ gemcitabine
TS low	74 (384/522)	E + pemetrexed
ERCC1 low	69 (303/440)	E+ platinum
EGFR positive, amplified	57 (114/199), 56 (176/312)	+ cetuximab
TP53 mutation	54 (70/129)	+ chemo + cell cycle checkpoint i
PTEN loss, mutation	51 (279/547), 0.8 (1/125)	+ PAM pathway i
TOPO2A positive	51 (225/442)	+ etoposide
TOPO1 positive	47 (226/485)	+ irinotecan
TUBB3 low, TLE3 positive	46 (49/107), 14 (15/107)	+ taxane
MGMT low	42 (205/489)	+ temozolomide
cMET positive, amplified	38 (75/199), 11 (19/172)	+ onartuzumab
ER positive	9 (43/479)	E+ tamoxifen
PIK3CA mutation	4 (8/199)	E + PAM pathway i
ALK rearrangement	0.5 (2/377)	E + crizotinib

Conclusions

Proposed Combination Strategies

Combination of targeted agents

Combination of targeted agents + traditional chemotherapy

MEK Inhibitor combinations - KRAS mutation positive patients

Target	% (n)	Proposed Combination
	84 (879/1042)	+ gemcitabine
	72 (747/1037)	+ pemetrexed
mutation	47 (524/1115), 2 (5/288)	+ PAM pathway i
itive	42 (409/982)	+ irinotecan
ve, amplified	41 (176/434), 22 (146/673)	+ cetuximab
ive, amplified	34 (127/369), 3.4 (13/378)	+ cMET-targeted therapy
tive	29 (298/1032)	+ nab-paclitaxel
TLE3 positive	24 (63/286), 21 (92/440)	+ taxane
tion	2 (21/1172)	+ EGFR-targeted therapy

Major Targetable alterations in NSCLC

Target	% (n)	Targeted Agent	Target	% (n)
KRAS mutation	30 (1292/4291)	MEK inhibitors	ALK rearrangement	3 (103/3612)
EGFR mutation	15 (741/5030)	erlotinib, afatinib	ROS1 rearrangement	1 (18/1296)
cMET amplification	6 (86/1517)	crizotinib	HER2 mutation	1 (8/1049)
PIK3CA mutation	4 (61/1597)	mTOR inhibitors	AKT mutation	0.5 (5/1061)
BRAF mutation	3.5 (61/1731)	dabrafenib	NRAS mutation	0.4 (5/1256)

cMET inhibitor combinations – cMET positive or amplified patients

Additional Target	% (n)	Proposed Combination
RRM1 low	82 (464/565)	+ gemcitabine
ERCC1 low	69 (82/119)	+ platinum
TOPO1 positive	58 (290/502)	+ irinotecan
EGFR positive	51 (305/597)	+ cetuximab
SPARC positive	39 (209/539)	+ nab-paclitaxel
TUBB3 low, TLE3 positive	28 (141/503), 18 (103/578)	+ taxane
PTEN loss	26 (155/605)	+ PAM pathway i

Erlotinib (E) combinations - EGFR mutation positive patients

PAM (PIK3CA/AKT/mTOR) pathway inhibitor combinations – **PIK3CA mutation positive or PTEN lost**

Additional Target	% (n)	Proposed Combination
RRM1 low	77 (3575/4690)	+ gemcitabine
TS low	70 (3238/4633)	+ pemetrexed
cMET positive	68 (1186/1741)	+ cMET i
TOPO2A positive	62 (1538/2489)	+ etoposide
MGMT low	51 (1375/2705)	+ temozolomide
TP53 mutation	49 (389/801)	+ chemo + cell cycle checkpoint i
TOPO1 positive	46 (2045/4407)	+ irinotecan
TUBB3 low, TLE3 positive	38 (435/1138), 25 (435/1740)	+ taxane
SPARC positive	32 (1482/4660)	+ nab-paclitaxel
KRAS mutation	30 (1128/3791)	+ MEK i

Combinations of targeted therapies with traditional cytotoxic chemotherapies, as well as novel combinations of targeted therapies is under active investigation Utilization of a multiplatform approach which consists of tests that have predictive utility for cytotoxic agents as well targeted therapies, provides guidance for combining agents. These data support the continued investigation of optimizing combination therapy strategies for NSCLC Our study shows that among treatment candidates of targeted therapies in NSCLC, a significant portion present activation of multiple pathways, therefore the majority of alterations are not mutually exclusive from other biomarkers.

BRAF inhibitor combinations – **BRAF** mutation positive patients

Additional Target	% (n)	Proposed Combination
RRM1 low	88 (36/41)	+ gemcitabine
ERCC1 low	78 (14/18)	+ platinum
TS low	74 (28/38)	+ pemetrexed
TOPO1 positive	57 (17/30)	+ irinotecan
EGFR positive	47 (23/49)	+ cetuximab
PTEN loss	47 (24/51)	+ PAM pathway i
TUBB3 low, TLE3 positive	41 (12/29), 9 (4/47)	+ taxane
cMET positive, amplified	32 (15/47), 10 (4/40)	+ cMET i
SPARC positive	28 (11/40)	+ nab-paclitaxel
KRAS mutation	5 (3/60)	+ MEK i

Crizotinib (C) combinations – ALK or ROS1 positive patients

Additional Target	% (n)
RRM1 low	80 (63/79)
TS low	80 (63/79)
EGFR positive, amplified	63 (34/54), 18 (7/38)
ERCC1 low	61 (34/56)
TOPO1 positive	57 (41/72)
cMET positive, amplified	44 (23/52), 4 (2/52)
PTEN loss	36 (31/87)
SPARC positive	31 (25/80)
TUBB3 low, TLE3 positive	25 (8/32), 23 (12/53)
TP53 mutation	16 (6/38)

i = inhibitor

Targeted Agent	
crizotinib	
crizotinib	
afatinib, trastuzumab	
AKT inhibitors	
MEK inhibitors	

Proposed Combination
+ gemcitabine
+ pemetrexed
+ cetuximab
+ platinum
+ irinotecan
+ cMET-targeted therapy
+ PAM pathway i
+ nab-paclitaxel
+ taxane
+ chemo + cell cycle checkpoint i