

Identification of therapy options for Rare and Resistant Gastrointestinal Stromal Tumors (GIST)

¹Rebecca Feldman, PhD, ¹Sandeep Reddy, MD, ¹Zoran Gatalica, MD DSc, ²Michael J. Pishvaian, MD PhD ¹Caris Life Sciences, Phoenix, AZ, ²Georgetown University, Washington, DC

Abstract (No. 10539)

Background: GISTs are predominantly defined by KIT/PDGFRA mutations which are targetable with a range of kinase inhibitors, however the majority become TKI-resistant (TKI-R). Double (KIT/PDGFRA) wildtype (D-WT) GISTs represent rare subset of GIST patients in need of treatment options. We investigated a commercial database of theranostic biomarkers for the identification of novel therapy options for GIST.

Methods: 217 GIST cases were evaluated for D-WT and TKI-R. A multiplatform approach of biomarker testing was used and included a combination of sequencing (NGS, Sanger), protein expression (IHC) and gene amplification (ISH).

Results: D-WT (n=15) and TKI-R (n= 23) (including 7 with resistance mutations in the absence of a primary, activating KIT mutation and 4 PDGFRA D842V) were studied for additional targetable alterations. IHC and ISH tests revealed no overexpression or amplification in cMET, EGFR, or HER2. PTEN was intact (positive expression) in the majority of GISTs (92.9% (13/14) D-WT; 100% (19/19) TKI-R). Mutational screening revealed variants in 6/47 genes (excluding cKIT and PDGFRA), most of which are potentially targetable with therapies currently available, or in clinical trials: PIK3CA, ABL, cMET, JAK3, RB1, and VHL. ABL and JAK3 mutations were exclusively found in the TKI-R subgroup. PD-1 positive tumor infiltrating lymphocytes were found in 33% (1/3 D-WT) and 60% (3/5 TKI-R), while PD-L1 tumor expression was found in 67% (2/3 D-WT) and 40% (2/5 TKI-R). Although chemotherapy has historically elicited poor responses in GIST (non-selected patient trials), we observed a high frequency of low expression of predictive markers for gemcitabine (RRM1) and paclitaxel (TUBB3) (77%, 90%; 57%, 73% for D-WT and TKI-R, respectively) and high frequency of TOPO1 overexpression for irinotecan (57%, 32% in D-WT and TKI-R, respectively) which were recently shown to be cytotoxic in TKI-R GIST cell lines (Boichuk, 2014).

Conclusions: A multiplatform approach of theranostic biomarkers identified non-cKIT/PDGFRA therapy options for rare and resistant GIST. Opportunities for investigating new targetable agents and potentially re-visiting cytotoxics with biomarker guidance in these subpopulations are warranted.

Background

- Prior to the identification of the molecular drivers, cKIT and PDGFRA, in GIST, clinical management was similar to other soft tissue sarcomas, which included conventional chemotherapies such as doxorubicin.
- Standard treatment for GIST now includes a repertoire of small-molecule inhibitors including imatinib, sunitinib and regorafenib. As with other targeted approaches, the acquisition of resistance mutations inevitably emerge, and novel therapy approaches are needed for patients who have stopped responding to TKIs.
- In addition, treatment standards for the GIST population lacking cKIT or PDGFRA activating mutations (10-15% of GIST patients) are also needed.
- Interestingly, a recent study³ demonstrated the surprising sensitivity of GIST cell lines and TKI-R GIST patient-derived xenograft models to non-targeted FDA-approved, chemotherapeutic agents.

Methods

Two hundred seventeen GIST cases referred to Caris Life Sciences from 2009 – 2015 were evaluated; diagnoses were collected from referring physicians and classified at intake based on pathology and clinical history. Specific testing was performed per physician request and included a combination of sequencing (next-generation sequencing [NGS, 47 genes, hot spot] or Sanger), protein expression (immunohistochemistry or IHC) and gene amplification (CISH or FISH).

Patients included in this study were those exhibiting wildtype cKIT and PDGFRA genotypes (D-WT) and cKIT/PDGFRA variants associated with resistance to TKI therapy.

oculto				сКІТ	PDGFRA
esuits				11 (554_K558del); 17 (Y823D)	WТ
				11 (557_K558del); 13(V654A)	WT
Α			<u>ц</u>	9 (502_Y503dup); 17 (D820E)	WT
	D-WT (n=19)	TKI-R (n=24)	sen	11 (V560D); 13 (V654A)	WT
Esophagus	sophagus (1/19) 5%		Pre	11 (V560D); 17 (D820G)	WT
Stomach (6/19) 32%		(6/24) 25%	tion	11 (557_V559delinsF); 13 (V654A)	WT
Small Intestine (6/19) 32%		(6/24) 25%	luta	11 (L576P); 17 (D820V/D816N)	WT
Colorectum (1/19) 5%		(1/24) 4%	≥ ≥	11 (554_V560delinsVG); 17 (R815_K818delinsIE)	WT
Other (abdominal soft			ndai	11 (552_k558del); 17 (Y823D)	WT
tissues, peritoneum,	(5/19) 26%	(11/24) 46%	ecol	11 (P551_V555del); 13 (V654A)	WT
GI Tract, nos)	I Tract, nos)		Ň	11 (W557R); 13 (H650dup)	WT
	•	•		11 (572_P573dup); 17 (D820Y)	WT
B Males Females				11(551_V555del); 17 (N822K)	WT
			5 .	17 (N822Y)	WT
	XT		Mutation i of Primary	17 (N822K)	WT
				17 (N822K)	WT
				17 (N822K)	WT
D-WT: 58% 🗖 📕 42%			ance	17 (Y823D)	WT
TKL. P. 75%	25%		Sista	17 (Y823D)	WT
INI-N. 7370			Re	17 (D820G)	WT
			, e -	WT	18 (D842V)
			iFR⊿ anc	WT	18 (D842V)
Mean Age (years): 57 (D-WT) 62 (TKI-R)			PDG esist Auta	WT	18 (D842V)
				WT	18 (D842V)

Figure 1A-1C. Primary Tumor Attributes (e.g. site location, genotypes) and Patient **Demographics.** 1A. Primary tumor sites; most frequent sites were stomach/small intestine for D-WT and gastrointestinal tract, nos for TKI-R. 1B. Male gender and higher mean age associated with TKI-R subgroup. 1C. cKIT/PDGFRA genotypes for TKI-R subgroup.

specimens. Metastatic sites used for profiling are listed.

* An additional 5 patients have been identified since the submission of the abstract and included in this analysis

> *Metastatic sites included, for D-WT: abdomen (n=2), connective & soft tissues, chest wall, pelvis, liver (n=2), mesentery, adnexa, colon (n=2) and for TKI-R: abdomen (n=8), pelvis, connective & soft tissue, liver (n=3), omentum, pelvis (n=5), pancreas.

Figure 2. Percent of profiling performed on primary or metastatic tumor

Figure 3A-3B. Protein Biomarkers and Therapy Identification by IHC. 3A. % positivity is shown, unless indicated by #, which are low/negative frequencies (low expression associates with favorable response). Select biomarkers are associated with responses to cytotoxic agents, which were shown to have anti-tumor effects on TKI-R GIST patientderived xenografts³. Immunomodulatory therapies may be of interest as well, based on presence of PDL1 expression in tumor cells and presence of PD1+ TILs. The 2 GIST patients with loss of PTEN expression had normal PIK3CA/AKT genotype. 3B. Predictive biomarker assay by IHC identifies at least one therapy option in 86% of D-WT and TKI-R GIST patients.

7% (1/14) 0% (0/14)

TKI-R

Variants were not detected in the following genes, in either subgroup: AKT1, ALK, APC, BRAF, BRCA1, BRCA2, CDH1, CSF1R, CTNNB1, EGFR, ERBB2, ERBB4, FBXW7, FGFR1, FGFR2, FLT3, GNA11, GNAQ, GNAS, HNF1A, HRAS, HNF1A, HRAS, IDH1, JAK2, KDR, KRAS, MLH1, NOTCH1, NPM1, NRAS, PTEN, PTPN11, SMAD4, SMARCB1, SMO, STK11

0% (0/14) 21% (3/14) 7% (1/15) 0% (0/12)

Table 2. Variants detected by Next Generation Sequencing for D-WT and TKI-R GIST **subgroups.** PIK3CA is the only gene, out of the 47 tested, for which variants were detected in both subgroups. Variants in RB1 were detected in two patients in the D-WT subgroup, and JAK3 in three patients in the TKI-R subgroup. A minority of variants detected can be matched to therapies approved for other solid tumors, or therapies under investigation in clinical trials.

RET	TP53	VHL	
5% (1/19)	5% (1/19)	0% (0/17)	
0% (0/14)	0% (0/14)	8% (1/13)	

				Additional Gene Alterations and Potential Therapeutic Targets				
Patient		cKIT	PDGFRA	Gene	Variant	Variant Classification/ Functional Significance	Therapeutic Approach	
D - W T	1	WT	WT	ATM	D1815fs	Pathogenic, inactivating mutation	DNA-damaging agents, e.g. platinum agents, PARP inhibitors	
				RET	Y791F	VUS, likely passenger role	n/a	
	2	WT	WT	cMET	T1010I	VUS, weak oncogenic potential	n/a	
	3	WT	WT	РІКЗСА	E545A	Pathogenic, increased catalytic activity	PIK3CA-AKT-mTOR pathway inhibitors	
	4	WT	WT	RB1	R661W	Pathogenic;	n/a	
	5	WT	WT	RB1	R661W	Partial inactivation of Rb protein		
	6	WT	WT	TP53	C277Y	Presumed Pathogenic	n/a	
Т	1	11(P551_V555del); 17 (N822K)	WT	VHL	E160Q	VUS, likely passenger role	n/a	
	2	11(V560D); 17 (D820G)	WT	PIK3CA	H1047R	Pathogenic, increased catalytic activity	PIK3CA-AKT-mTOR pathway inhibitors	
	3	17 (D820G)	WT	JAK3	V722I		JAK3 inhibitors being tested for auto-	
- R	4	WT	18 (D842V)	JAK3	V722I	VUS, gain of function variants.		
	5	WT	18 (D842V)	JAK3	V718L	activating alleles in AMKL & AML	immune diseases, unknown role in cancer	
	6	WT	18 (D842V)	ABL1	P408S	VUS	n/a	

 Table 3. Clinical Implications of variants detected by Next-Generation
Sequencing. Therapeutic targets identified by NGS are infrequent events. In D-WT GIST, pathogenic mutations in ATM, PIK3CA, RB1 and TP53 were detected, for which, only PIK3CA and ATM are considered targetable. The most frequently mutated gene in TKI-R GIST, JAK3, has unknown clinical implications in these patients.

Conclusions

- A subgroup of GIST patients, including those that lack activating mutations in cKIT/PDGFRA and those harboring cKIT/PDGFRA resistance mutations, are in great need of therapy options outside of the standard of care
- Preclinical data³ and predictive biomarker expression distribution presented here, supports "re-visiting" chemotherapy options in a selected population of GIST patients
- IHC identified at least 1 therapy option (chemotherapy and/or targeted therapies not considered standard of care for GIST) in 86% of rare (D-WT) and resistant (TKI-R) GIST.
- Variants detected by NGS offer limited value in identification of targetable alterations. Of the 43 patients included in this study, 3 patients exhibited variants that can be targeted (PIK3CA, ATM).

References

- 1. Songdej, N. and M. von Mehren, et al. (2014). "GIST Treatment Options after Tyrosine Kinase Inhibitors." Current Treatment Options in Oncology 15:493-506.
- 2. Huss, S., E. Wardelmann, et al. (2015). "Classification of KIT/PDGFRA wild-type gastrointestinal stromal tumors: implications for therapy." Early Online 1-6.
- 3. Boichuk, S., A. Duensing, et al. (2014). "Unbiased Compound Screening Identifies Unexpected Drug Sensitivities and Novel Treatment Options for Gastrointestinal Stromal Tumors." Cancer Res 74(4): 1200-1213..