Background

Endometrial carcinoma (EC) is typically divided into endometrioid (Type I) and non-endometrioid (Type II) subtypes, despite considerable heterogeneity within each category. Microarray and single-cell analysis have revealed considerable complexity among individual EC cases, with no single treatment strategy applicable to all. Exploitation of the molecular landscape of ECs might identify optimal treatment strategies.

Methods

Out of a total of 3133 ECs submitted to Caris Life Sciences between Mar 2011 and Jul 2014, 1364 cases were Type I and 1268 were Type II EC based on reported pathology. Multiparameter molecular analysis included gene sequencing (Sanger or next generation sequencing), immunohistochemistry (IHC) of protein expression, and/or gene amplification (FISH/CISH).

Results

- **Type I** was characterized and included 682 cases of uterine cancer (USC). USC showed 44% CTNNB1 mutation rate.
- **Type II** carcinomas were characterized and included 588 cases of clear cell adenocarcinoma, 363 cases of carcinosarcoma (CS), 38 cases of mucinous, and 36 cases of squamous cell carcinoma. Overall, there was a high frequency of ERCC2 homologous recombination expression: USC (90%/32%), CC (75%/15%), CS (75%/6%), and squamous (90%/40%).
- USC expressed high AR compared with other non-endometrioid EC: USC (97%), CC (7%), CS (12%), mucinous (16%), and squamous (0%).
- PI3K/AKT pathway was high in USC (80%/12%), CC (75%/30%) and CS (40%/25%).
- Suggesting potential benefit with PD-1/PD-L1 inhibition, c-met overexpression was notably high in CC (40%) and mucinous (43%) tumors, suggesting promise with anti-cMET therapy.
- TP53 was mutated most frequently in USC (76%) and CS (69%), followed by endometrioid subtypes that could guide future therapy. Correlating molecular profiles with clinical outcomes will assist in developing rational guidelines for therapy in individuals with EC.

Conclusion

- 3133 cases of endometrial cancer were submitted to Caris Life Sciences from March 2011 to July 2014.
- Specific testing was performed per physician request and included a combination of sequencing (Sanger, NGS or pyrosequencing), protein expression (IHC), gene amplification (FISH or FISH/CISH), and/or RNA fragment analysis.
- The analysis was performed on formalin-fixed paraffin-embedded tumor samples using commercially available detection kits, automated staining techniques (PathVysion, Ventana, and Automated In situ Hybridization kits), and commercially available antibodies.
- Fluorescent in situ hybridization (FISH) was used for evaluation of the HER-2 (CEP 17/HER-2 probe), EGFR (CEP 7/EGFR probe), and ERBB2 (CEP 7/ERBB2 probe) antibody targets. Immunohistochemistry (IHC) and MGMT promoter analysis were also performed for the IHC probe (HER-2/neu probe) and the MGMT probe (Abbott). The same scoring system was applied as for FISH.
- Primary squamous tissue, either formalin fixed paraffin embedded, was used in the Illumina platform. The study included 3133 ECs: USC, CC, CS.
- Mutations in the TP53 gene were among the most frequent mutations, affecting 76% of USC tumors, 69% of CS tumors, and 70% of CC tumors. This was followed by mutations in the PIK3CA gene (40%) and the KRAS gene (10%).
- In the USC cohort, the most frequent mutations were in the TP53 gene (76%), followed by the PIK3CA gene (40%) and the KRAS gene (10%).
- In the CC cohort, the most frequent mutations were in the TP53 gene (70%), followed by the PIK3CA gene (20%) and the KRAS gene (13%).
- In the CS cohort, the most frequent mutations were in the TP53 gene (93%), followed by the PIK3CA gene (63%) and the KRAS gene (4%).

Discussion

- Endometrial carcinoma has traditionally been divided into Type I and Type II disease based on unique histopathologic and genetic characteristics.1
- Type I disease typically arises in the setting of unopposed estrogen stimulation and has a well-defined precursor lesion (complex atypical hyperplasia or CAH). Patients usually present with early stage disease and have an overall good prognosis.2
- Type II disease, on the other hand, typically arises in the setting of an atrophic endometrium without a hormonally driven pathologic process associated with CAH, with higher stage, aggressive behavior, and worse prognoses.3
- Characteristic mutational profiles and overexpression profiles were seen more in association with each type with although some overlap exists. Thereby, it may be more helpful from a therapeutic standpoint to understand their mutational alterations.
- Because the non-endometrioid subtypes are uncommon, using a large tumor database with molecular and genetic information helps to identify unique tumor profiles and identify thematic pathways for therapeutic exploration.

References

1. Nathaniel L Jones1, Joanne Xiu2, Sandeep K. Reddy2, Ana I. Tergas1, William M. Burke1, Jason D. Wright1, June Y. Hou1, 2. Columbia University College of Physicians and Surgeons and New York Presbyterian Hospital 1Columbia Life Sciences

Distinct molecular landscape between endometrioid and non-endometrioid uterine carcinoma

Nathaniel L Jones1, Joanne Xiu2, Sandeep K. Reddy2, Ana I. Tergas1, William M. Burke1, Jason D. Wright1, June Y. Hou1

1Columbia University College of Physicians and Surgeons and New York Presbyterian Hospital 1Columbia Life Sciences

- Endometrial carcinoma (EC) is typically divided into endometrioid (Type I) and non-endometrioid (Type II) subtypes, despite considerable heterogeneity within each category. Microarray and single-cell analysis have revealed considerable complexity among individual EC cases, with no single treatment strategy applicable to all. Exploitation of the molecular landscape of ECs might identify optimal treatment strategies.
- Out of a total of 3133 ECs submitted to Caris Life Sciences between Mar 2011 and Jul 2014, 1364 cases were Type I and 1268 were Type II EC based on reported pathology. Multiparameter molecular analysis included gene sequencing (Sanger or next generation sequencing), immunohistochemistry (IHC) of protein expression, and/or gene amplification (FISH/CISH).
- The analysis was performed on formalin-fixed paraffin-embedded tumor samples using commercially available detection kits, automated staining techniques (PathVysion, Ventana, and Automated In situ Hybridization kits), and commercially available antibodies.
- Fluorescent in situ hybridization (FISH) was used for evaluation of the HER-2 (CEP 17/HER-2 probe), EGFR (CEP 7/EGFR probe), and ERBB2 (CEP 7/ERBB2 probe) antibody targets. Immunohistochemistry (IHC) and MGMT promoter analysis were also performed for the IHC probe (HER-2/neu probe) and the MGMT probe (Abbott). The same scoring system was applied as for FISH.
- Primary squamous tissue, either formalin fixed paraffin embedded, was used in the Illumina platform. The study included 3133 ECs: USC, CC, CS.
- Mutations in the TP53 gene were among the most frequent mutations, affecting 76% of USC tumors, 69% of CS tumors, and 70% of CC tumors. This was followed by mutations in the PIK3CA gene (40%) and the KRAS gene (10%).
- In the USC cohort, the most frequent mutations were in the TP53 gene (76%), followed by the PIK3CA gene (40%) and the KRAS gene (10%).
- In the CC cohort, the most frequent mutations were in the TP53 gene (70%), followed by the PIK3CA gene (20%) and the KRAS gene (13%).
- In the CS cohort, the most frequent mutations were in the TP53 gene (93%), followed by the PIK3CA gene (63%) and the KRAS gene (4%).

Discussion

- Endometrial carcinoma has traditionally been divided into Type I and Type II disease based on unique histopathologic and genetic characteristics.1
- Type I disease typically arises in the setting of unopposed estrogen stimulation and has a well-defined precursor lesion (complex atypical hyperplasia or CAH). Patients usually present with early stage disease and have an overall good prognosis.2
- Type II disease, on the other hand, typically arises in the setting of an atrophic endometrium without a hormonally driven pathologic process associated with CAH, with higher stage, aggressive behavior, and worse prognoses.3
- Characteristic mutational profiles and overexpression profiles were seen more in association with each type although some overlap exists. Thereby, it may be more helpful from a therapeutic standpoint to understand their mutational alterations.
- Because the non-endometrioid subtypes are uncommon, using a large tumor database with molecular and genetic information helps to identify unique tumor profiles and identify thematic pathways for therapeutic exploration.