Validation of a Microsatellite Instability Assay by NGS

Mark R. Miglarese, Ph.D.
VP R&D
Caris Life Sciences®

230,000+ tests performed in 2016

- Headquarters: Irving, Texas
- Laboratory: Phoenix, Arizona
 - 66,000 sq. ft. oncology-focused
 - ISO 15189, CLIA, CAP, NY State and CE Mark approved/certified
- Profiled 120,000+ patients
 - 7,000+ physicians
 - All 50 states
 - 63 countries
- Laboratory staff
 - Pathologists
 - Molecular Geneticists
 - Consulting Medical Oncologists
 - MD and/or PhD literature evidence review team
 - ~100 trained molecular & laboratory technicians
Comprehensive Technological Arsenal Fuels Invention Across a Broad Range of Molecular Biology

- **Comprehensive Technology Suite**
 - Sequencing (Next-Gen, Whole Exome, Sanger, Pyro)
 - Nanostring
 - PCR (ddPCR, nanoliter scale PCR, qPCR, RT-PCR)
 - Laser Capture Microdissection
 - *In Situ* Hybridization
 - Histology, special stains
 - Immunohistochemistry
 - Autostaining (DAKO, Ventana)
 - Slide imaging
 - Immunoprecipitation, immunoblotting
 - Cell culture
 - ELISA
 - Robotics
 - Protein cross-linking
 - Microarray
 - Mass Spec (Maldi TOF, Quantitative proteomics)
 - HPLC, FPLC
 - Polyligandhistochemistry
 - Luminex
 - Surface plasmon resonance
 - Dynamic Light Scattering
 - Fluorescent Activated Cell Sorting
 - *In vitro* pharmacology
 - Oligo synthesis (native or modified)
 - Nanosight
 - Exosome isolation and characterization
 - Liposomal formulations

- **Multi-Disciplinary Expertise**
 - Bioinformaticians
 - Mathematicians/Statisticians
 - Medical Oncologists
 - Molecular Biologists
 - Molecular Geneticists
 - Molecular Pathologists
 - Research Scientists
Caris Clinical Testing Menu

Next Gen DNA Sequencing
Illumina NextSeq System

- 592 full genes sequenced
- Includes all SNVs and indels on guidelines
- Includes nearly all markers included in clinical trials

Also reported
- Total Mutational Load
- Copy Number Variation on 442 genes
- Micro Satellite Instability

Next Gen RNA Sequencing
Illumina MiSeq System

- 53 genes sequenced
- Novel translocation detection independent of intronic breakpoint
- ALK translocation
- ROS1 translocation
- RET translocation
- NTRK 1-3 translocations
- CMET exon 14 skipping
- EFGFv3
- BRAF translocation
- RSPO3 translocation

Protein Expression
Ventana & Dako Immunohistochemistry

- 25 lineage specific IHC
- Lung
 - PDL-1 (22c3)
 - ALK
 - PTEN
 - RRM1
 - TOPO1
 - TS
 - TUBB3
- CRC
 - MMR markers
- Breast
 - ER, PR, AR, Her2

Identifying key molecular features that bring value requires understanding the complexity of the system we are working within.
Caris CMI Testing for Immunotherapies

Identify Patients More Likely to Respond to Immune Checkpoint Inhibitors with Biomarker Testing from Caris Molecular Intelligence:

PD-L1
Immunohistochemistry

Programmed death ligand-1 (PD-L1) is among the most important checkpoint proteins that mediate tumor-induced immune suppression through T-cell downregulation. PD-L1 expression may indicate response to immune checkpoint inhibitors.

Caris has performed more than 30,000 PD-L1 tests across all lineages.

MSI
Fragment Analysis

Microsatellite instability (MSI) is caused by failure of the DNA mismatch repair (MMR) system. MSI-High correlates to an increased neoantigen burden, which may respond more favorably to immune checkpoint inhibitors.

MSI testing is included for all colorectal and endometrial cancers.

TML
Next-Generation Sequencing

Total mutational load (TML) measures the total number of non-synonymous somatic mutations identified per megabase of the genome coding area. Tumors with high TML likely harbor neoantigens and may respond more favorably to immune checkpoint inhibitors.

TML is reported for all solid tumors tested with Next-Generation Sequencing (592 genes).
The World just Changed – FDA approved pembro across all solid tumors that are MSI-High
MSI leads to an increase in the number of neoantigens and increases the likelihood of immune recognition.
Responses observed in a large proportion of patients

(Le et al. Science 2017)
Significant increase in survival was observed across MSI-High patients

(Le et al. Science 2017)
Traditional approach employs PCR to compare tumor to normal across 5 loci.

<table>
<thead>
<tr>
<th>Sample Name</th>
<th>Panel</th>
<th>Marker</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTL</td>
<td>Promega MSI</td>
<td>BAT-25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>sz 117.57 ht 1174</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sz 123.97 ht 1526</td>
</tr>
<tr>
<td>CTL NM</td>
<td>Promega MSI</td>
<td>BAT-25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>sz 123.89 ht 2190</td>
</tr>
</tbody>
</table>
Distribution of 27,039 polymorphic microsatellite markers across the human genome

MSI Validation Process

Compare NGS data to PCR (comparing cancer and normal tissue) on ~2200 patients

Algorithm Training: Maximize Sensitivity, Specificity, NPV, and PPV

Test on 200 Naïve patients and compare to MSI by PCR and MMR by IHC

<table>
<thead>
<tr>
<th></th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>PPV</th>
<th>NPV</th>
</tr>
</thead>
<tbody>
<tr>
<td>All (2196 Patients)</td>
<td>95.8%</td>
<td>99.4%</td>
<td>94.5%</td>
<td>99.2%</td>
</tr>
<tr>
<td>CRC (1198 Patients)</td>
<td>100.0%</td>
<td>99.9%</td>
<td>98.7%</td>
<td>99.6%</td>
</tr>
</tbody>
</table>
Distribution of in-dels across 5K patients

![Graph showing the distribution of in-dels across 5K patients. The x-axis represents the number of loci, ranging from 0 to 120, with a peak around 40 loci. The y-axis represents the frequency of patients, ranging from 0 to 300, with a peak around the 20-40 loci range. Red line indicates a threshold for MSI.](image)
Malignant Solitary Fibrous Tumor of the Pleura (MSFT)
Esophageal and Esophagogastric Junction Carcinoma
Lung Non-Small Cell Lung Cancer (NSCLC)
- Non Epithelial Ovarian Cancer (non-EOC)
- Lung Bronchioloalveolar carcinoma (BAC)
Retroperitoneal or Peritoneal Carcinoma
Gastrointestinal Stromal Tumors (GIST)
- Extrahepatic Bile Duct Adenocarcinoma
- Cell Lymphoma
Ovarian Surface Epithelial Carcinomas
Retroperitoneal or Peritoneal Sarcoma
Head and neck Squamous Carcinoma
Female Genital Tract Malignancy
Lung Small Cell Cancer (SCLC)
Liver Hepatocellular Carcinoma
Acute myeloid leukemia (AML)

Uveal Melanoma
Thyroid Carcinoma
Thymic Carcinoma
Soft Tissue Tumors
Small Intestinal Malignancies
Retroperitoneal or Peritoneal Sarcoma
Retroperitoneal or Peritoneal Carcinoma
Prostatic Adenocarcinoma
Pancreatic Adenocarcinoma
Ovarian Surface Epithelial Carcinomas
None Of These Apply
Non Epithelial Ovarian Cancer (non-EOC)
Nodal Diffuse Large B-Cell Lymphoma
Neuroendocrine tumors
Multiple Myeloma
Melanoma
Malignant Solitary Fibrous Tumor of the Pleura (MSFT)
Male Genital Tract Malignancy
Lymphoma
Lung Small Cell Cancer (SCLC)
Lung Non-Small cell lung cancer (NSCLC)
Lung Bronchioloalveolar carcinoma (BAC)
Low Grade Glioma
Liver Hepatocellular Carcinoma
Kidney Cancer
Head and neck Squamous Carcinoma
Glioblastoma
Gastrointestinal Stromal Tumors (GIST)
Gastric Adenocarcinoma
Female Genital Tract Malignancy
Extrahepatic Bile Duct Adenocarcinoma
Esophageal and Esophagogastric Junction Carcinoma
Colorectal Adenocarcinoma
Cholangiocarcinoma
Breast Carcinoma
Bladder Cancer
Acute myeloid leukemia (AML)
Relationship between MSI, TML, PDL-1

All Lineages

- TML
- MSI
- PDL1

N=8952

3% of Patients are MSI unstable

17.6% of Patients are PDL-1 positive

8.1% of Patients are TML high

408

194

93

228

46

9

1417

©2017 Caris Life Sciences
MSI is highly correlated to TML in Colorectal Cancer Patients
MSI-NGS vs. TML – relationship depends on lineage

![Scatter plots comparing MSI as altered microsatellite (MS) loci determined by NGS to TML per megabase for colorectal adenocarcinoma (n = 1267), endometrial cancer (n = 667), NSCLC (n = 964), and melanoma (n = 175). The horizontal line indicates 46 altered MS and the vertical line indicates 17 mutations/Mb.](image)

Figure 4. Scatter plots comparing MSI as altered microsatellite (MS) loci determined by NGS to TML per megabase for colorectal adenocarcinoma (n = 1267), endometrial cancer (n = 667), NSCLC (n = 964), and melanoma (n = 175). The horizontal line indicates 46 altered MS and the vertical line indicates 17 mutations/Mb.
Relationship of other immunotherapy markers to MSI-NGS
Frequency of MSI across lineages

(Le et al. Science 2017)
Thank you!