Multiplatform molecular analysis of biomarkers in renal cell carcinoma

Thai H. Ho1, Sherri Z. Mills2, Nancy Dolfi3, Dave Bryant4, Zoran Gatalica3, Sandeep Reddy5, Richard Joseph6, Nick Vogelzang
1Mayo Clinic Arizona, Scottsdale, AZ; 2Caris Life Sciences, Phoenix, AZ; 3Mayo Clinic Florida, Jacksonville, FL; 4Nevada Comprehensive Cancer Center, Las Vegas, NV

Abstract

Background: Predictive biomarkers of response to targeted therapy are lacking in renal cell carcinoma (RCC). We evaluated a cohort of RCC patients referred for multiplatform molecular profiling to identify potentially actionable recurrent molecular aberrations.

Methods: 166 consecutive renal cases referred to Caris Life Sciences over 2 years were evaluated with central pathology review. Cases were subtyped into clear cell (ccRCC, n=91); papillary (PRCC, n=20); sarcomatoid, n=21; medullary, n=4, or translocation or unclassified, n=30 (removed for this analysis). Metastatic status was documented for 63% of cases; the median age was 61 overall with an age range of 19-86. 75% of subjects were male. Testing included a combination of sequencing (Sanger or next generation sequencing [NGS]), protein expression (immunohistochemistry [IHC]), and/or gene amplification (CISH or FISH).

Results: ccRCC had a 52% loss of PTEN, while PRCC had a 21% loss (p value=0.02). 100% of ccRCC with sarcomatoid features (n=4) showed aberrant expression of PD-L1 and were infiltrated with PD-1+ tumor infiltrating lymphocytes (TILs); of non-ccRCC with sarcomatoid features (n=10), 100% of those tested (n=2) also had aberrant expression of PD-L1. The single PRCC with sarcomatoid features also had aberrant expression of PD-L1. Loss of PBRM1 expression was observed in 60% of ccRCC. Loss of histone 3 lysine 36 trimethylation (H3K36me3), which is associated with SETD2 mutations, was observed in 30% of ccRCC. TOP2A was overexpressed in ccRCC at 30% and in non-ccRCC at 50%. 100% of ccRCC and PRCC overexpressed EGFR. 50% of ccRCC and 68% of PRCC had cMET overexpression. VHL mutations were identified in 51% of ccRCC tumors. We observed lower rates of TP53 (11%), ATM (6%), and PIK3CA (13% ccRCC, 6% PRCC, 11% sarcomatoid) mutations compared to other cancers. Alterations at multiple points in the PI3 kinase pathway may inform responses to rapalogs. Alterations in PI3 kinase pathway biomarkers. Functional convergence on cMET activation in PRCC was observed with PD-L1 and PD-L2 upregulation. PD-1 overexpression and PD-1+ TILS were observed in RCC with sarcomatoid features; future studies are warranted to determine response to PD-L1/PD-L2 targeted immunotherapies.

Conclusions: Molecular profiling that incorporates both DNA sequencing and protein expression in renal cell carcinoma identifies potential predictive biomarkers in ccRCC. Alterations at multiple points in the PI3 kinase pathway may inform responses to rapalogs. PD-L1 overexpression and PD-1+ TILS were observed in RCC with sarcomatoid features; future studies are warranted to determine response to PD-L1/PD-L2 targeted immunotherapies. The impact of molecular profiling in ccRCC to predict responses to currently available targeted therapy has important implications for trial design and patient selection.

References

1. Tung, M.H. et al. (2013) "Tumor Suppressor Disruption of Patients with Metastatic Papillary Clear Cell Carcinoma is Associated with Poor Outcomes." J Clin Oncol 31: 239-244.