Expression of Novel Immunotherapeutic Targets in Triple Negative Breast Cancer

Gargi D. Basu PhD, Caris Life Sciences, Phoenix, AZ
Anatole Ghazalpour PhD, Caris Life Sciences, Phoenix, AZ
Zoran Gatalica MD, Caris Life Sciences, Phoenix, AZ
Karen S. Anderson MD, Arizona State University, Tempe, AZ
Ann McCullough MD, Mayo Clinic, Phoenix, AZ
David Spetzler PhD, Caris Life Sciences, Phoenix, AZ
Barbara A. Pockaj MD, Mayo Clinic, Phoenix, AZ
Diclosures

• Barbara A. Pockaj, MD
 – Nothing to disclose

• Collaborators are employees at Caris Life Sciences
Learning Objectives

• Discuss immune checkpoints and their ramifications in human cancers
• Evaluate the presence of PD-L1 expression in a large breast cancer population
• Identify immune and molecular pathway associations with PD-L1
• Review preliminary validation data
Introduction – Immune Checkpoints

• Immune checkpoints regulate the duration and level the T-cell response
 – Cytotoxic T-lymphocyte Antigen-4 (CTLA-4) functions as an “off” switch to T-cell activity in the priming phase
 – Programmed Death (PD-1) regulates T-cell activity during the effector phase and can shut down antigen-specific T cells in the tumor microenvironment
 • Tumor cells can block the immune response via the PD-1 checkpoint by expressing programmed death ligands (PD-L1) and inactivating T-cells
Introduction – Immune Mechanisms

• IDO1 indoleamine 2,3-dioxygenase 1 (IDO-1) – catalyzes the first and rate-limiting step in tryptophan catabolism
 – Important to immune tolerance and immunosuppression
 – IDO-1 inhibitors are available
 • Current trials are now underway
Clinical Application of Immunotherapy

• Several drugs have been developed which block the CTLA-4 and PD1 Immune Checkpoints
 – Anti-CTLA-4
 • Ipilimumab
 • Tremelimumab
 – Anti-PD1
 • Nivolumab (BMS936558/MDX-1106)
 • Lambrolizumab (MK-3475)
 – Anti-PD-L1
 • BMS-936559, MDX-1105
 • MPDL3280A/RG7446
 • MEDI4736
 • AMP-224
 • Pidilizumab (CT-011)
<table>
<thead>
<tr>
<th>Trial</th>
<th>Drug</th>
<th>Tumor Type</th>
<th>Response Rate</th>
<th>Immune Correlates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topalian, NEJM, 2012</td>
<td>Nivolumab (BMS-936558)</td>
<td>Melanoma, NSCLC, Renal Cell, Colorectal, Prostate</td>
<td>18% NSCLC 28% Melanoma 27% Renal</td>
<td>Response related to PD-L1 tumor expression 36% Response PD-L1+ 0% Response PD-L1-</td>
</tr>
<tr>
<td></td>
<td>Anti-PD-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wolchok, NEJM, 2013</td>
<td>Nivolumab + Ipilimumab</td>
<td>Melanoma</td>
<td>40% Concurrent Therapy 20% Sequential Therapy</td>
<td>PD-L1 Expression did not correlate to response for concurrent therapy but did for sequential therapy</td>
</tr>
<tr>
<td></td>
<td>Anti-PD-1 and Anti-CTLA-4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daud, AACR, 2014</td>
<td>MK-3475 Anti-PD-L1</td>
<td>Melanoma</td>
<td>ORR 41%</td>
<td>ORR correlated with PD-L1 expression 52% ORR PD-L1+ 6% PD-L1-</td>
</tr>
</tbody>
</table>

Presented by: Barbara A. Pockaj, MD
Methods

• 3993 formalin fixed, paraffin embedded breast cancer samples (Caris Life Sciences)

• Gene expression was performed using Illumina HumanHT-12 v4 BeadChip

• The Comprehensive R Archive Network was used for statistical computing and graphics

• The study was IRB approved
Breast Cancer
N=3993

ER-
- HER2-
 - PR- N=515
 - PR+ N=125
- HER2+
 - PR+ N=33
 - PR- N=271

ER+
- HER2+
 - PR+ N=133
 - PR- N=125
- HER2-
 - PR+ N=1867
 - PR- N=924
Methods

• Validation:
 – Immunohistochemistry (Caris Life Sciences)
 • Slides were stained using an automated system (Ventana Medical Systems, Tucson, AZ) as per manufacturer’s protocol with proprietary reagents.
 • IHC stained slides were scored by pathologists.
 – Tumor staining was scored for all markers except for PD1 which was scored in the tumor infiltrating lymphocytes.
 – BRCA 1 somatic mutation testing was performed by Next Gen Sequencing (Illumina Miseq platform)
 • Sequencing plots were read by board certified geneticists.
Methods

- Validation
 - 18 TNBC cases analyzed at Mayo Clinic in Arizona using array-based comparative genomic hybridization (aCGH) to evaluate genomic amplifications and deletion
RESULTS
PD-L1 Levels

Data was normalized by doing mean normalization (using mean value from control normal breast tissue)

Presented by: Barbara A. Pockaj, MD
CTLA-4 and IDO1 Levels

Presented by: Barbara A. Pockaj, MD

CTLA-4

IDO1
PD-L1 Associations

• Spearman correlation test
 – Positive correlation with immune regulators:
 • CTLA-4 correlation coefficient 0.528
 • IDO1 correlation coefficient 0.481
 – Mixed results with the Phosphatidylinositol 3-kinase (PI3-kinase) Pathway
 • PIK3CA correlation coefficient 0.39
 • PTEN correlation coefficient 0.11
AR Expression and PD-L1

- Anova p value = .05
- Suggests that there is a relationship between AR expression and PDL1 expression
 - AR- higher likelihood of expressing
- Similar finding with IDO1 and CTLA-4

Presented by: Barbara A. Pockaj, MD
Differential expression of 144 genes based on T test between the high and low PD-L1 expressers:
• 4 distinct clusters noted in the PD-L1 low vs high population
Heatmap Analysis

- WebGestalt a "WEB-based GEne SeT AnaLysis Toolkit" was used to do enrichment analysis of the heatmap data
 - DNA repair genes were significant (adjusted p value=0.02)
 - BRCA1
 - Fanconi anemia, complementation group A
 - HUS1 checkpoint homolog (S. Pombe)
Validation

- 36 TNBC patients were profiled for PD1, PD-L1, AR, BRCA1 mutation.
 - PD-L1 expression 10 patients (28%)
 - PD-1 expression is present in 22 patients (61%)
 - Co-expression of PD-1 and PD-L1 was found in 7/10 patients (70%)
Validation

• AR expression found in 9 (25%) patients
 – Only 1 patient (11%) to be PD-L1+
• 33% of AR- TNBC were PD-L1+
• 90% PD-L1+ were AR-

• 3/3 BRCA1 mutated patients were PD-L1+

• 4/4 BRCA1+ (Mayo Samples) were PD-L1+
PI-3 Kinase Pathway

• Loss of PTEN expression was present in 19 patients (54%)
 – Only 4 of these patients were PD-L1+ (21%)
• PI3K mutation was present in 5 patients (14%)
 – Only 1 patient (20%) was PD-L1+
Validation

• cGH revealed over-expression of PD-L1 in 3/18 patients (17%)
 – All patients were AR- 3/11 (27%)
 • Mixed PI-3 Kinase pathway changes
Validation

CD274 (PD-L1)

Data provided by Michael Barrett, PhD

Chromosome 9

3.4N genome

Presented by: Barbara A. Pockaj, MD
Conclusions

- A subset of TNBC patients express immune regulatory targets suggesting immunotherapy may be an effective option
 - PD-L1+ appears to be associated with
 - AR- TNBC
 - BRCA1 mutated TNBC
- High expression of PD-L1 in BRCA1 deficient as well as BRCA1 mutated patients indicate that anti PD-1/PD-L1 therapy in combination with platinum salts and/or PARP inhibitors may be a synergistic treatment strategy that warrants further study.

Presented by: Barbara A. Pockaj, MD
Conclusions

• Consistent association with the PI-3 Kinase pathway are not found
• Further validation of findings are ongoing
 – Does PD-L1 overexpression by cGH lead to PD-L1 expression as seen by IHC?
 – Is PD-L1 expression correlated with BRCA1 mutation?
 • Would BRCA1 mutated patients benefit from immunotherapy?
Acknowledgements

Special Thank You to Dr. Gargi Basu, PI, Caris Life Sciences
Leader of this scientific project

ACKNOWLEDGEMENTS
Profiled 62,000+ patients to-date:
– 6,400 referring physicians
– All 50 states
– 30 countries

Laboratory personnel
– Pathologists and PAs
– Molecular Geneticists
– Consulting Medical Oncologists
– scientists
-- Entire lab staff

©Caris Life Sciences and affiliates.
Acknowledgements

• Special thank you to the Mayo Clinic Breast Cancer Interest Group “BIG”
 – Ann E. McCullough, MD
 – Karen S. Anderson, MD, PhD
 – Michael T. Barrett, PhD
 – Amylou C. Dueck, PhD
 – Sandy J. Gendler, PhD
 – Mia D. Champion, PhD
 – Donald W. Northfelt, MD